
LATEX for authors
current version

© Copyright 2020–2025, LATEX Project Team.
All rights reserved.∗

2025-02-01

Contents
1 Introduction 2

2 Creating document commands and environments 2
2.1 Overview . 2
2.2 Describing argument types . 2
2.3 Modifying argument descriptions 4
2.4 Creating document commands and environments 4
2.5 Optional arguments . 6
2.6 Spacing and optional arguments 6
2.7 ‘Embellishments’ . 7
2.8 Testing special values . 8
2.9 Auto-converting to key–value format 10
2.10 Argument processors . 11
2.11 Body of an environment . 13
2.12 Fully-expandable document commands 14
2.13 Commands at the start of tabular cells 15
2.14 Using the verbatim argument types 15
2.15 Typesetting verbatim-like material 16
2.16 Verbatim environments . 16
2.17 Performance . 17
2.18 Details about argument delimiters 17
2.19 Creating new argument processors 18

3 Copying and showing (robust) commands and environments 19

4 Preconstructing command names
(or otherwise expanding arguments) 20

∗This file may be distributed and/or modified under the conditions of the LATEX Project
Public License, either version 1.3c of this license or (at your option) any later version. See
the source usrguide.tex for full details.

1

5 Expandable floating point (and other) calculations 21

6 Case changing 23

7 Support for problem solving 25

1 Introduction

LATEX2ε was released in 1994 and added a number of then-new concepts to
LATEX. These are described in usrguide-historic, which has largely remained
unchanged. Since then, the LATEX team have worked on a number of ideas,
firstly a programming language for LATEX (expl3) and then a range of tools for
document authors which build on that language. Here, we describe stable and
widely-usable concepts that have resulted from that work. These ‘new’ ideas
have been transferred from development packages into the LATEX2ε kernel. As
such, they are now available to all LATEX users and have the same stability as
any other part of the kernel. The fact that ‘behind the scenes’ they are built on
expl3 is useful for the development team, but is not directly important to users.

2 Creating document commands and environ-
ments

2.1 Overview

Creating document commands and environments using the LATEX3 toolset is
based around the idea that a common set of descriptions can be used to cover
almost all argument types used in real documents. Thus parsing is reduced
to a simple description of which arguments a command takes: this description
provides the ‘glue’ between the document syntax and the implementation of the
command.

First, we will describe the argument types, then move on to explain how these
can be used to create both document commands and environments. Various
more specialized features are then described, which allow an even richer appli-
cation of a simple interface set up.

The details here are intended to help users create document commands in
general. More technical detail, suitable for TEX programmers, is included in
interface3.

2.2 Describing argument types

In order to allow each argument to be defined independently, the parser does
not simply need to know the number of arguments for a function, but also the
nature of each one. This is done by constructing an argument specification,
which defines the number of arguments, the type of each argument and any

2

additional information needed for the parser to read the user input and properly
pass it through to internal functions.

The basic form of the argument specifier is a list of letters, where each letter
defines a type of argument. As will be described below, some of the types
need additional information, such as default values. The argument types can be
divided into two, those which define arguments that are mandatory (potentially
raising an error if not found) and those which define optional arguments. The
mandatory types

m A standard mandatory argument, which can either be a single token alone
or multiple tokens surrounded by curly braces {}. Regardless of the input,
the argument will be passed to the internal code without the outer braces.
This is the type specifier for a normal TEX argument.

r Given as r⟨token1 ⟩⟨token2 ⟩, this denotes a ‘required’ delimited argument,
where the delimiters are ⟨token1 ⟩ and ⟨token2 ⟩. If the opening delimiter
⟨token1 ⟩ is missing, the default marker -NoValue- will be inserted after
a suitable error.

R Given as R⟨token1 ⟩⟨token2 ⟩{⟨default⟩}, this is a ‘required’ delimited ar-
gument as for r, but it has a user-definable recovery ⟨default⟩ instead of
-NoValue-.

v Reads an argument ‘verbatim’, between the following character and its
next occurrence, in a way similar to the argument of the LATEX2ε com-
mand \verb. Thus a v-type argument is read between two identical char-
acters, which cannot be any of %, \, #, {, } or ␣. The verbatim argument
can also be enclosed between braces, { and }. A command with a verba-
tim argument will produce an error when it appears within an argument
of another command.

b Only suitable in the argument specification of an environment, it de-
notes the body of the environment, between \begin{⟨environment⟩} and
\end{⟨environment⟩}. See Section 2.11 for details.

The types which define optional arguments are:

o A standard LATEX optional argument, surrounded with square brackets,
which will supply the special -NoValue- marker if not given (as described
later).

d Given as d⟨token1 ⟩⟨token2 ⟩, an optional argument which is delimited by
⟨token1 ⟩ and ⟨token2 ⟩. As with o, if no value is given the special marker
-NoValue- is returned.

O Given as O{⟨default⟩}, is like o, but returns ⟨default⟩ if no value is given.

D Given as D⟨token1 ⟩⟨token2 ⟩{⟨default⟩}, it is as for d, but returns ⟨default⟩
if no value is given. Internally, the o, d and O types are short-cuts to an
appropriated-constructed D type argument.

3

s An optional star, which will result in a value \BooleanTrue if a star is
present and \BooleanFalse otherwise (as described later).

t An optional ⟨token⟩, which will result in a value \BooleanTrue if ⟨token⟩
is present and \BooleanFalse otherwise. Given as t⟨token⟩.

e Given as e{⟨tokens⟩}, a set of optional embellishments, each of which
requires a value. If an embellishment is not present, -NoValue- is returned.
Each embellishment gives one argument, ordered as for the list of ⟨tokens⟩
in the argument specification. All ⟨tokens⟩ must be distinct.

E As for e but returns one or more ⟨defaults⟩ if values are not given:
E{⟨tokens⟩}{⟨defaults⟩}. See Section 2.7 for more details.

2.3 Modifying argument descriptions

In addition to the argument types discussed above, the argument description
also gives special meaning to three other characters.

First, + is used to make an argument long (to accept paragraph tokens). In
contrast to \newcommand, this applies on an argument-by-argument basis. So
modifying the example to ‘s o o +m O{default}’ means that the mandatory
argument is now \long, whereas the optional arguments are not.

Secondly, ! is used to control whether spaces are allowed before optional argu-
ments. There are some subtleties to this, as TEX itself has some restrictions on
where spaces can be ‘detected’: more detail is given in Section 2.6.

Thirdly, = is used to declare that the following argument should be interpreted
as a series of keyvals. See Section 2.9 for more details.

Finally, the character > is used to declare so-called ‘argument processors’, which
can be used to modify the contents of an argument before it is passed to the
macro definition. The use of argument processors is a somewhat advanced topic,
(or at least a less commonly used feature) and is covered in Section 2.10.

2.4 Creating document commands and environments

\NewDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}
\RenewDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}
\ProvideDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}
\DeclareDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}

This family of commands are used to create a ⟨cmd⟩. The argument specification
for the function is given by ⟨arg spec⟩, and the command uses the ⟨code⟩ with
#1, #2, etc. replaced by the arguments found by the parser.

An example:

\NewDocumentCommand\chapter{s o m}
{%

\IfBooleanTF{#1}%

4

{\typesetstarchapter{#3}}%
{\typesetnormalchapter{#2}{#3}}%

}

would be a way to define a \chapter command which would essentially behave
like the current LATEX2ε command (except that it would accept an optional ar-
gument even when a * was parsed). The \typesetnormalchapter could test its
first argument for being -NoValue- to see if an optional argument was present.
(See Section 2.8 for details of \IfBooleanTF and testing for -NoValue-.)

The difference between the \New... \Renew..., \Provide... and \Declare...
versions is the behavior if ⟨cmd⟩ is already defined.

• \NewDocumentCommand will issue an error if ⟨cmd⟩ has already been de-
fined.

• \RenewDocumentCommand will issue an error if ⟨cmd⟩ has not previously
been defined.

• \ProvideDocumentCommand creates a new definition for ⟨cmd⟩ only if one
has not already been given.

• \DeclareDocumentCommand will always create the new definition, irrespec-
tive of any existing ⟨cmd⟩ with the same name. This should be used
sparingly.

If the ⟨cmd⟩ can’t be provided as a single token but needs “constructing”, you
can use \ExpandArgs as explained in Section 4 which also gives an example in
which this is needed.

\NewDocumentEnvironment {⟨env⟩} {⟨arg spec⟩} {⟨beg-code⟩} {⟨end-code⟩}
\RenewDocumentEnvironment {⟨env⟩} {⟨arg spec⟩} {⟨beg-code⟩} {⟨end-code⟩}
\ProvideDocumentEnvironment {⟨env⟩} {⟨arg spec⟩} {⟨beg-code⟩} {⟨end-code⟩}
\DeclareDocumentEnvironment {⟨env⟩} {⟨arg spec⟩} {⟨beg-code⟩} {⟨end-code⟩}

These commands work in the same way as \NewDocumentCommand, etc., but cre-
ate environments (\begin{⟨env⟩} . . . \end{⟨env⟩}). Both the ⟨beg-code⟩ and
⟨end-code⟩ may access the arguments as defined by ⟨arg spec⟩. The arguments
will be given following \begin{⟨env⟩}. Any spaces at the start and end of the
{⟨env⟩} are removed before the definition takes place, thus

\NewDocumentEnvironment{foo}

and

\NewDocumentEnvironment{ foo }

both create the same “foo” environment.

5

2.5 Optional arguments

In contrast to commands created using LATEX2ε’s \newcommand, optional ar-
guments created using \NewDocumentCommand may safely be nested. Thus for
example, following

\NewDocumentCommand\foo{om}{I grabbed ‘#1’ and ‘#2’}
\NewDocumentCommand\baz{o}{#1-#1}

using the command as

\foo[\baz[stuff]]{more stuff}

will print

I grabbed ‘stuff-stuff’ and ‘more stuff’

This is particularly useful when placing a command with an optional argument
inside the optional argument of a second command.

When an optional argument is followed by a mandatory argument with the same
delimiter, the parser issues a warning because the optional argument could not
be omitted by the user, thus becoming in effect mandatory. This can apply
to o, d, O, D, s, t, e, and E type arguments followed by r or R-type required
arguments.

The default for O, D and E arguments can be the result of grabbing another
argument. Thus for example

\NewDocumentCommand\foo{O{#2} m}

would use the mandatory argument as the default for the leading optional one.

2.6 Spacing and optional arguments

TEX will find the first argument after a function name irrespective of any in-
tervening spaces. This is true for both mandatory and optional arguments. So
\foo[arg] and \foo␣[arg] are equivalent. Spaces are also ignored when col-
lecting arguments up to the last mandatory argument to be collected (as it must
exist). So after

\NewDocumentCommand\foo{m o m}{ ... }

the user input \foo{arg1}[arg2]{arg3} and \foo{arg1}␣[arg2]␣{arg3} will
both be parsed in the same way.

The behavior of optional arguments after any mandatory arguments is se-
lectable. The standard settings will allow spaces here, and thus with

6

\NewDocumentCommand\foobar{m o}{ ... }

both \foobar{arg1}[arg2] and \foobar{arg1}␣[arg2] will find an optional
argument. This can be changed by giving the modified ! in the argument
specification:

\NewDocumentCommand\foobar{m !o}{ ... }

where \foobar{arg1}␣[arg2] will not find an optional argument.

There is one subtlety here due to the difference in handling by TEX of ‘control
symbols’, where the command name is made up of a single character, such as
‘\\’. Spaces are not ignored by TEX here, and thus it is possible to require an
optional argument directly follow such a command. The most common example
is the use of \\ in amsmath environments, which in the terms here would be
defined as

\NewDocumentCommand\\{!s !o}{ ... }

Also notable when using optional arguments in the last position is that TEX will
necessarily look ahead for the argument opening token. This means that the
value of \inputlineno will be ‘out by one’ if such a trailing optional argument
is not present and the command ends a line; it will be one greater than the line
number containing the last mandatory argument.

2.7 ‘Embellishments’

The E-type argument allows one default value per test token. This is achieved
by giving a list of defaults for each entry in the list, for example:

E{^_}{{UP}{DOWN}}

If the list of default values is shorter than the list of test tokens, the special
-NoValue- marker will be returned (as for the e-type argument). Thus for
example

E{^_}{{UP}}

has default UP for the ^ test character, but will return the -NoValue- marker as
a default for _. This allows mixing of explicit defaults with testing for missing
values.

7

2.8 Testing special values

Optional arguments make use of dedicated variables to return information about
the nature of the argument received.

\IfNoValueTF {⟨arg⟩} {⟨true code⟩} {⟨false code⟩}
\IfNoValueT {⟨arg⟩} {⟨true code⟩}
\IfNoValueF {⟨arg⟩} {⟨false code⟩}

The \IfNoValue(TF) tests are used to check if ⟨argument⟩ (#1, #2, etc.) is the
special -NoValue- marker. For example

\NewDocumentCommand\foo{o m}
{%

\IfNoValueTF {#1}%
{\DoSomethingJustWithMandatoryArgument{#2}}%
{\DoSomethingWithBothArguments{#1}{#2}}%

}

will use a different internal function if the optional argument is given than if it
is not present.

Note that three tests are available, depending on which outcome branches are
required: \IfNoValueTF, \IfNoValueT and \IfNoValueF.

As the \IfNoValue(TF) tests are expandable, it is possible to test these values
later, for example at the point of typesetting or in an expansion context.

It is important to note that -NoValue- is constructed such that it will not match
the simple text input -NoValue-, i.e. that

\IfNoValueTF{-NoValue-}

will be logically false. When two optional arguments follow each other (a
syntax we typically discourage), it can make sense to allow users of the command
to specify only the second argument by providing an empty first argument.
Rather than testing separately for emptiness and for -NoValue- it is then best New

description
2022/06/01

to use the argument type O with an empty default value, and then test for
emptiness using the conditional \IfBlankTF (described below) instead.

\IfValueTF {⟨arg⟩} {⟨true code⟩} {⟨false code⟩}
\IfValueT {⟨arg⟩} {⟨true code⟩}
\IfValueF {⟨arg⟩} {⟨false code⟩}

The reverse form of the \IfNoValue(TF) tests are also available as \IfValue(TF).
The context will determine which logical form makes the most sense for a given
code scenario.

\IfBlankTF {⟨arg⟩} {⟨true code⟩} {⟨false code⟩}
\IfBlankT {⟨arg⟩} {⟨true code⟩}
\IfBlankF {⟨arg⟩} {⟨false code⟩}

New feature
2022/06/01

8

The \IfNoValueTF command chooses the ⟨true code⟩ if the optional argument
has not been used at all (and it returns the special -NoValue- marker), but not
if it has been given an empty value. In contrast \IfBlankTF returns true if its
argument is either truly empty or only contains one or more normal blanks. For
example

\NewDocumentCommand\foo{m!o}{\par #1:
\IfNoValueTF{#2}

{No optional}%
{%

\IfBlankTF{#2}
{Blanks in or empty}%
{Real content in}%

}%
\space argument!}

\foo{1}[bar] \foo{2}[] \foo{3}[] \foo{4}[\space] \foo{5} [x]

results in the following output:

1: Real content in argument!

2: Blanks in or empty argument!

3: Blanks in or empty argument!

4: Real content in argument!

5: No optional argument! [x]

Note that the \space in (4) is considered real content—because it is a command
and not a “space” character—even though it results in producing a space. You
can also observe in (5) the effect of the ! specifier, preventing the last \foo
from interpreting [x] as its optional argument.

\BooleanFalse
\BooleanTrue

The true and false flags set when searching for an optional character (using
s or t⟨char ⟩) have names which are accessible outside of code blocks.

\IfBooleanTF {⟨arg⟩} {⟨true code⟩} {⟨false code⟩}
\IfBooleanT {⟨arg⟩} {⟨true code⟩}
\IfBooleanF {⟨arg⟩} {⟨false code⟩}

Used to test if ⟨argument⟩ (#1, #2, etc.) is \BooleanTrue or \BooleanFalse.
For example

\NewDocumentCommand\foo{sm}
{%

\IfBooleanTF {#1}%
{\DoSomethingWithStar{#2}}%
{\DoSomethingWithoutStar{#2}}%

}

9

checks for a star as the first argument, then chooses the action to take based on
this information.

2.9 Auto-converting to key–value format

Some document commands have a long history of accepting a ‘free text’ optional
argument, for example \caption and the sectioning commands \section, etc.
Introducing more sophisticated (keyval) options to these commands therefore
needs a method to interpret the optional argument either as free text or as a
series of keyvals. This needs to take place during argument grabbing as there is
a need for careful treatment of braces to obtain the correct result.

The = modifier is available to allow ltcmd to correctly implement this process.
The modifier guarantees that the argument will be passed to further code as a
series of keyvals. To do that, the = should be followed by an argument containing
the default key name. This is used as the key in a key–value pair if the ‘raw’
argument does not have the correct form to be interpreted as a set of keyvals.

Taking \caption as an example, with the demonstration implementation

\DeclareDocumentCommand
\caption
{s ={short-text} +O{#3} +m}
{%

\showtokens{Grabbed arguments:^^J(#2)^^Jand^^J(#3)}%
}

the default key name is short-text. When the command \caption is then
used, if the optional argument is free text such as

\caption[Some short text]{A much longer and more detailed text for
demonstration purposes}

then the output will be

Grabbed arguments:
(short-text={Some short text})
and
(A much longer and more detailed text for demonstration purposes)

On the other hand, if the caption is given with a keyval-form argument

\caption[label = cap:demo]%
{A much longer and more detailed text for demonstration purposes}

then this will be respected

Grabbed arguments:
(label = cap:demo)
and
(A much longer and more detailed text for demonstration purposes)

10

Interpretation as keyval form is determined by the presence of = characters
within the argument. Those in inline math mode (enclosed within $...$ or
\(...\)) are ignored. An argument can be forced to be read as keyvals by
including an empty entry at the start

\caption[=,This is now a keyval]%
% ...
\caption[This is not $=$ keyval]%

This empty entry is not passed to the underlying code, so will not lead to issues
with keyval parsers that do not allow an empty key name. Any text-mode =
signs will need to be braced to avoid being misinterpreted: this is likely most
conveniently handled by bracing the entire argument

\caption[{Not = to a keyval!}]%

which will be passed correctly as

Grabbed arguments:
(short-text = {Not = to a keyval!})

2.10 Argument processors

Argument processor are applied to an argument after it has been grabbed by
the underlying system but before it is passed to ⟨code⟩. An argument processor
can therefore be used to regularize input at an early stage, allowing the internal
functions to be completely independent of input form. Processors are applied to
user input and to default values for optional arguments, but not to the special
-NoValue- marker.

Each argument processor is specified by the syntax >{⟨processor⟩} in the argu-
ment specification. Processors are applied from right to left, so that

>{\ProcessorB} >{\ProcessorA} m

would apply \ProcessorA followed by \ProcessorB to the tokens grabbed by
the m argument.

\SplitArgument {⟨number⟩} {⟨token(s)⟩}

This processor splits the argument given at each occurrence of the ⟨tokens⟩ up
to a maximum of ⟨number⟩ tokens (thus dividing the input into ⟨number⟩ + 1
parts). An error is given if too many ⟨tokens⟩ are present in the input. The
processed input is placed inside ⟨number⟩ + 1 sets of braces for further use. If
there are fewer than {⟨number⟩} of {⟨tokens⟩} in the argument then -NoValue-
markers are added at the end of the processed argument.

\NewDocumentCommand \foo {>{\SplitArgument{2}{;}} m}
{\InternalFunctionOfThreeArguments#1}

11

If only a single character ⟨token⟩ is used for the split, any category code 13
(active) character matching the ⟨token⟩ will be replaced before the split takes
place. Spaces are trimmed at each end of each item parsed.

The E argument type is somewhat special, because with a single E in the com-
mand declaration you may end up with several arguments in a command (one
formal argument per embellishment token). Therefore, when an argument pro-
cessor is applied to an e/E-type argument, all the arguments pass through that
processor before being fed to the ⟨code⟩. For example, this command

\NewDocumentCommand \foo { >{\TrimSpaces} e{_^} }
{ [#1](#2) }

applies \TrimSpaces to both arguments.

\SplitList {⟨token(s)⟩}

This processor splits the argument given at each occurrence of the ⟨token(s)⟩
where the number of items is not fixed. Each item is then wrapped in braces
within #1. The result is that the processed argument can be further processed
using a mapping function (see below).

\NewDocumentCommand \foo {>{\SplitList{;}} m}
{\MappingFunction#1}

If only a single character ⟨token⟩ is used for the split, it will take account of
the possibility that the ⟨token⟩ has been made active (category code 13) and
will split at such tokens. Spaces are trimmed at each end of each item parsed.
Exactly one set of braces will be stripped if an entire item is surrounded by
them, i.e. the following inputs and outputs result (each separate item as a brace
group).

a ==> {a}
{a} ==> {a}
{a}b ==> {{a}b}
a,b ==> {a}{b}
{a},b ==> {a}{b}
a,{b} ==> {a}{b}
a,{b}c ==> {a}{{b}c}

\ProcessList {⟨list⟩} {⟨tokens⟩}

To support \SplitList, the function \ProcessList is available to apply
⟨tokens⟩ to every entry in a ⟨list⟩. The ⟨tokens⟩ can be arbitrary contents
that should expect one argument after it: the list entry. For example

\NewDocumentCommand \foo {>{\SplitList{;}} m}
{\ProcessList{#1}{\SomeDocumentCommand}}

or

12

\NewDocumentCommand \foo {>{\SplitList{;}} m}
{\ProcessList{#1}{Abc \SomeDocumentCommand}}

\ReverseBoolean

This processor reverses the logic of \BooleanTrue and \BooleanFalse, so that
the example from earlier would become

\NewDocumentCommand\foo{>{\ReverseBoolean} s m}
{%

\IfBooleanTF#1%
{\DoSomethingWithoutStar{#2}}%
{\DoSomethingWithStar{#2}}%

}

\TrimSpaces

Removes any leading and trailing spaces (tokens with character code 32 and
category code 10) for the ends of the argument. Thus for example declaring a
function

\NewDocumentCommand\foo {>{\TrimSpaces} m}
{\showtokens{#1}}

and using it in a document as

\foo{␣hello␣world␣}

will show ‘hello␣world’ at the terminal, with the space at each end removed.
\TrimSpaces will remove multiple spaces from the ends of the input in cases
where these have been included such that the standard TEX conversion of mul-
tiple spaces to a single space does not apply.

2.11 Body of an environment

While environments \begin{⟨environment⟩} . . . \end{⟨environment⟩} are typ-
ically used in cases where the code implementing the ⟨environment⟩ does not
need to access the contents of the environment (its ‘body’), it is sometimes
useful to have the body as a standard argument.

This is achieved by ending the argument specification with b, which is a dedi-
cated argument type for this situation. For instance

\NewDocumentEnvironment{twice} {O{\ttfamily} +b}
{#2#1#2} {}

\begin{twice}[\itshape]
Hello world!

\end{twice}

13

typesets ‘Hello world!Hello world!’.

The prefix + is used to allow multiple paragraphs in the environment’s body.
Argument processors can also be applied to b arguments. By default, spaces
are trimmed at both ends of the body: in the example there would otherwise be
spaces coming from the ends the lines after [\itshape] and world!. Putting
the prefix ! before b suppresses space-trimming.

When b is used in the argument specification, the last argument of the environ-
ment declaration (e.g., \NewDocumentEnvironment), which consists of an ⟨end
code⟩ to insert at \end{⟨environment⟩}, is redundant since one can simply put
that code at the end of the ⟨start code⟩. Nevertheless this (empty) ⟨end code⟩
must be provided.

Environments that use this feature can be nested.

2.12 Fully-expandable document commands

Document commands created using \NewDocumentCommand, etc., are normally
created so that they do not expand unexpectedly. This is done using engine fea-
tures, so is more powerful than LATEX2ε’s \protect mechanism. There are very
rare occasion when it may be useful to create functions using a expansion-only
grabber. This imposes a number of restrictions on the nature of the arguments
accepted by a function, and the code it implements. This facility should only
be used when necessary.

\NewExpandableDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}
\RenewExpandableDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}
\ProvideExpandableDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}
\DeclareExpandableDocumentCommand {⟨cmd⟩} {⟨arg spec⟩} {⟨code⟩}

This family of commands is used to create a document-level ⟨cmd⟩, which will
grab its arguments in a fully-expandable manner. The argument specification
for the function is given by ⟨arg spec⟩, and the ⟨cmd⟩ will execute ⟨code⟩. In
general, ⟨code⟩ will also be fully expandable, although it is possible that this
will not be the case (for example, a function for use in a table might expand so
that \omit is the first non-expandable non-space token).

Parsing arguments by pure expansion imposes a number of restrictions on both
the type of arguments that can be read and the error checking available:

• The last argument (if any are present) must be one of the mandatory types
m, r or R.

• The ‘verbatim’ argument type v is not available.

• Argument processors (using >) are not available.

• It is not possible to differentiate between, for example \foo[and \foo{[}:
in both cases the [will be interpreted as the start of an optional argument.
As a result, checking for optional arguments is less robust than in the
standard version.

14

2.13 Commands at the start of tabular cells

Creating commands that are used at the start of tabular cells imposes some
restrictions on the underlying implementation. The standard LATEX tabular en-
vironments (tabular, etc.) use a mechanism which requires that any command
wrapping \multicolumn or similar must be ‘expandable’. This is not the case
for commands created using \NewDocumentCommand, etc., which as detailed in
Section 2.12 use an engine feature which prevents such ‘expansion’. There-
fore, to create such wrappers for use at the start of tabular cells, you must use
\NewExpandableDocumentCommand, for example

\NewExpandableDocumentCommand\MyMultiCol{m}{\multicolumn{3}{c}{#1}}
\begin{tabular}{lcr}
a & b & c \\
\MyMultiCol{stuff} \\
\end{tabular}

2.14 Using the verbatim argument types

As described above, the v-type argument may be viewed as similar to \verb.
Before looking at exactly what that means, it is important to highlight some
key differences. Most notably, grabbing a verbatim-like argument is separate
from typesetting it: the latter is covered in the next section.

When grabbing a v-type argument, LATEX first uses the kernel command
\dospecials to turn off the “special” nature of characters. It then makes both
spaces and tabs “active”, so that they can be given a custom definition. Any
other characters are grabbed as-is: this means that if any characters have been
made “special” and are not listed in \dospecials, an error will arise (see below).

The characters that are grabbed as the argument are all those between two
identical: in contrast to \verb, the characters \, {, } and % cannot be used as
the delimiter character. If any of the grabbed tokens have “special” meaning,
an error will be issued.

For the +v-type argument, which allows line breaks within the argument, newline
characters are converted into \obeyedline commands. The standard definition
of \obeyedline is simple \par, thus allowing the grabbed tokens to be used
directly in typesetting. A local redefinition of \obeyedline can be used to
achieve other outputs. For example, to retain blank lines whilst typesetting,
one could use

\renewcommand*\obeyedline{\mbox{}\par}

More information about using these arguments in typesetting is in the following
subsection.

Some additional details that may be useful for those with more TEX knowledge:
do not worry if this does not make sense to you! Spaces and tabs are stored
as active characters. In 8-bit engines, non-ASCII characters are “active”, whilst
other than the letters a–zA–Z, ASCII characters are “other”. In Unicode engines,

15

non-ASCII codepoints will be either letters or “other”, based on the standard
LATEX settings derived from Unicode data. For token-based comparisons, it is
likely that the active spaces and tabs should be replaced: this can be done
conveniently by expansion.

2.15 Typesetting verbatim-like material

In contrast to \verb, the (+)v-type argument is only about grabbing the ar-
gument, not typesetting it. As such, features that users often associate with
“verbatim” are not automatically activated, e.g., selecting a monospaced font.
Material grabbed by the v-type argument does not automatically suppress lig-
atures: with modern TEX engines, this largely can be done without the token
manipulation which \verb uses. (In \verb, ligatures are suppressed by making
characters active and inserting a zero-width kern before the character itself.)

The \verb command also selects a monospaced font: this is not intrinsic to
verbatim material, so will need to be set up using for example \ttfamily.
Similarly, the verbatim environment sets up the meaning of \par suitable for
breaking lines.

2.16 Verbatim environments

In some cases, when grabbing the body of an environment you will want the
contents to be treated verbatim. This is available using the argument specifica-
tion c. Like the b specification, this has to be the last one. Thus for example

\NewDocumentEnvironment{MyVerbatim}{!O{\ttfamily} c}
{\begin{center} #1 #2\end{center}} {}

\begin{MyVerbatim}[\ttfamily\itshape]
% Some code is shown here
$y = mx + c$

\end{MyVerbatim}

will typeset verbatim the content, thus:

␣␣%␣Some␣code␣is␣shown␣here

␣␣$y␣=␣mx␣+␣c$

Since grabbing the entire contents verbatim will result in there being no \par
tokens, newlines are always permitted: there is no need for a + modifier here.
As for the v specification, newlines are stored as \obeyedline. In a similar
fashion to the b specification, by default newlines are trimmed at both ends of
the body. Putting the prefix ! before c suppresses this trimming.

Collection of the body takes place on a line-by-line basis: content is col-
lected up to the end-of-line in the source, then examined before storage. This
means that the line ending the environment (containing in the example above
\end{MyVerbatim}) cannot have any text after the end of the environment.

16

Text before the end of environment is treated normally, but note that there
is no trailing \obeyedline added if there is text here. Other than optional
arguments, no text is allowed on the opening line of the environment.

Special handling is applied to a o, O, d or D specification argument immediately
before an c specification. This means that when the optional argument is ab-
sent, the first character of the next line will be read with the correctly applied
verbatim category code. Issues may arise if multiple optional arguments are
used before a c specification, and are therefore strongly discouraged.

For technical reasons, we recommend that spaces are not ignored when searching
for an optional argument before an c specification: this can be achieved by
adding the ! modifier as shown in the example. However, this is left as a choice
for the user.

2.17 Performance

For document commands where the argument specification is entirely com-
prised of m or +m entries (or is entirely empty), the internal structure created by
\NewDocumentCommand is essentially as efficient as provided by \newcommand(*).
As such, document commands may replace constructs arising from \newcommand,
etc., without a need to be concerned about performance. It should be noted
that \newcommand(*) produces expandable results, so the direct replacement is
\NewExpandableDocumentCommand; in most cases, however, it is better to use
\NewDocumentCommand to give more robust structures.

2.18 Details about argument delimiters

In normal (non-expandable) commands, the delimited types look for the initial
delimiter by peeking ahead (using expl3’s \peek_... functions) looking for the
delimiter token. The token has to have the same meaning and ‘shape’ of the to-
ken defined as delimiter. There are three possible cases of delimiters: character
tokens, control sequence tokens, and active character tokens. For all practi-
cal purposes of this description, active character tokens will behave exactly as
control sequence tokens.

2.18.1 Character tokens

A character token is characterized by its character code, and its meaning is the
category code (\catcode). When a command is defined, the meaning of the
character token is fixed into the definition of the command and cannot change.
A command will correctly see an argument delimiter if the open delimiter has
the same character and category codes as at the time of the definition. For
example in:

\NewDocumentCommand { \foobar } { D<>{default} } {(#1)}
\foobar <hello> \par
\char_set_catcode_letter:N <
\foobar <hello>

17

the output would be:

(hello)
(default)<hello>

as the open-delimiter < changed in meaning between the two calls to \foobar,
so the second one doesn’t see the < as a valid delimiter. Commands assume
that if a valid open-delimiter was found, a matching close-delimiter will also
be there. If it is not (either by being omitted or by changing in meaning), a
low-level TEX error is raised and the command call is aborted.

2.18.2 Control sequence tokens

A control sequence (or control character) token is characterized by its name,
and its meaning is its definition. A token cannot have two different meanings at
the same time. When a control sequence is defined as delimiter in a command,
it will be detected as delimiter whenever the control sequence name is found in
the document regardless of its current definition. For example in:

\cs_set:Npn \x { abc }
\NewDocumentCommand { \foobar } { D\x\y{default} } {(#1)}
\foobar \x hello\y \par
\cs_set:Npn \x { def }
\foobar \x hello\y

the output would be:

(hello)
(hello)

with both calls to the command seeing the delimiter \x.

2.19 Creating new argument processors

\ProcessedArgument

Argument processors allow manipulation of a grabbed argument before it is
passed to the underlying code. New processor implementations may be created
as functions which take one trailing argument, and which leave their result in
the \ProcessedArgument variable. For example, \ReverseBoolean is defined
as

\ExplSyntaxOn
\cs_new_protected:Npn \ReverseBoolean #1

{
\bool_if:NTF #1

{ \tl_set:Nn \ProcessedArgument { \c_false_bool } }
{ \tl_set:Nn \ProcessedArgument { \c_true_bool } }

}
\ExplSyntaxOff

18

[As an aside: the code is written in expl3, so we don’t have to worry about
spaces creeping into the definition.]

3 Copying and showing (robust) commands and
environments

If you want to (slightly) alter an existing command you may want to save the
current definition under a new name and then use that in a new definition. If
the existing command is robust, then the old trick of using the low-level \let
for this doesn’t work, because it only copies the top-level definition, but not
the part that actually does the work. As most LATEX commands are nowadays
robust, LATEX now offers some high-level declarations for this instead.

However, please note that it is usually better to make use of available hooks (e.g.,
the generic command or environment hooks), instead of copying the current
definition and thereby freezing it; see the hook management documentation
lthooks-doc.pdf for details.

\NewCommandCopy {⟨cmd⟩} {⟨existing-cmd⟩}
\RenewCommandCopy {⟨cmd⟩} {⟨existing-cmd⟩}
\DeclareCommandCopy {⟨cmd⟩} {⟨existing-cmd⟩}

This copies the definition of ⟨existing-cmd⟩ to ⟨cmd⟩. After this ⟨existing-cmd⟩
can be redefined and ⟨cmd⟩ still works! This allows you to then provide a new
definition for ⟨existing-cmd⟩ that makes use of ⟨cmd⟩ (i.e., of its old definition).
For example, after

\NewCommandCopy\LaTeXorig\LaTeX
\RenewDocumentCommand\LaTeX{}{\textcolor{blue}{\LaTeXorig}}

all LATEX logos generated with \LaTeX will come out in blue (assuming you have
a color package loaded).

The differences between \New... and \Renew... are as elsewhere: i.e., you
get an error depending on whether or not ⟨cmd⟩ already exists, or in case of
\Declare... it is copied regardless. Note that there is no \Provide... decla-
ration, because that would be of limited value.

If the ⟨cmd⟩ or ⟨existing-cmd⟩ can’t be provided as a single token but need
“constructing”, you can use \ExpandArgs as explained in Section 4.

\ShowCommand {⟨cmd⟩}

This displays the meaning of the ⟨cmd⟩ on the terminal and then stops (just
like the primitive \show). The difference is that it correctly shows the meaning
of more complex commands, e.g., in case of robust commands it displays not
only the top-level definition but also the actual payload code and in case of
commands declared with \NewDocumentCommand, etc. it also gives you detailed
information about the argument signature.

19

\NewEnvironmentCopy {⟨env⟩} {⟨existing-env⟩}
\RenewEnvironmentCopy {⟨env⟩} {⟨existing-env⟩}
\DeclareEnvironmentCopy {⟨env⟩} {⟨existing-env⟩}

This copies the definition for environment ⟨existing-env⟩ to ⟨env⟩ (both the
beginning and end code), i.e., it is simply applying \NewCommandCopy twice to
the internal commands that define an environment, i.e., \⟨env⟩ and \end⟨env⟩.
The differences between \New..., \Renew..., and \Declare... are the usual
ones.

\ShowEnvironment {⟨env⟩}

This displays the meaning of the begin and end code for environment ⟨env⟩.

4 Preconstructing command names (or otherwise
expanding arguments)

When declaring new commands with \NewDocumentCommand or \NewCommandCopy
or similar, it is sometimes necessary to “construct” the csname. As a general
mechanism the L3 programming layer has \exp_args:N... for this, but there
is no mechanism for it if \ExplSyntaxOn is not active (and mixing program-
ming and user interface level commands is not a good approach anyhow). We
therefore offer a mechanism to access this ability using CamelCase naming.

\UseName {⟨string⟩}
\ExpandArgs {⟨spec⟩} {⟨cmd⟩} {⟨arg1 ⟩} . . .

\UseName turns the ⟨string⟩ directly into a csname and then executes it: this
is equivalent to the long-standing LATEX2ε internal command \@nameuse, or
the L3 programming equivalent \use:c. \ExpandArgs takes a ⟨spec⟩ which
describes how to expand the ⟨arguments⟩, carries out these operations then exe-
cutes the ⟨cmd⟩. The ⟨spec⟩ uses the descriptions offered by the L3 programming
layer, and the relevant \exp_args:N... function must exist. Common cases
will have a ⟨spec⟩ of c, cc or Nc: see below.

As an example, the following declaration provides a method to generate copyedit
commands:

\NewDocumentCommand\newcopyedit{mO{red}}
{%

\newcounter{todo#1}%
\ExpandArgs{c}\NewDocumentCommand{#1}{s m}%

{%
\stepcounter{todo#1}%
\IfBooleanTF {##1}%

{\todo[color=#2!10]{\UseName{thetodo#1}: ##2}}%
{\todo[inline,color=#2!10]{\UseName{thetodo#1}: ##2}}%

}%
}

20

Given that declaration you can then write \newcopyedit{note}[blue] which
defines the command \note and the corresponding counter for you.

A second example is to copy a command by string name using \NewCommandCopy:
here we might need to construct both command names.

\NewDocumentCommand\savebyname{m}
{\ExpandArgs{cc}\NewCommandCopy{saved#1}{#1}}

In the ⟨spec⟩ each c stands for one argument that is turned into a ‘c’ommand.
An n represents a ‘n’ormal argument that is not altered and N stands for a
‘N’ormal argument which is also left unchanged, but one consisting only of a
single token (and usually unbraced). Thus, to construct a command from a
string only for the second argument of \NewCommandCopy you would write

\ExpandArgs{Nc}\NewCommandCopy\mysectionctr{c@section}

There are several other single letters supported in the L3 programming layer
that could be used in the ⟨spec⟩ to manipulate arguments in other ways. If
you are interested, take a look at the “Argument expansion” section in the L3
programming layer documentation in interface3.pdf.

5 Expandable floating point (and other) calcula-
tions

The LATEX3 programming layer which is part of the format offers a rich inter-
face to manipulate floating point variables and values. To allow for (simpler)
applications to use this on document-level or in packages otherwise not making
use of the L3 programming layer a few interface commands are made available.

\fpeval {⟨floating point expression⟩}

The expandable command \fpeval takes as its argument a floating point ex-
pression and produces a result using the normal rules of mathematics. As this
command is expandable it can be used where TEX requires a number and for
example within a low-level \edef operation to give a purely numerical result.

Briefly, the floating point expressions may comprise:

• Basic arithmetic: addition x + y, subtraction x - y, multiplication x * y,
division x / y, square root sqrtx, and parentheses.

• Comparison operators: x < y, x <= y, x >? y, x != y etc.

The relation x ? y is true exactly if one or both operands is NaN or is
a tuple, unless they are equal tuples. Each ⟨relation⟩ can be any (non-
empty) combination of <, =, >, and ?, plus an optional leading ! (which
negates the ⟨relation⟩), with the restriction that the negated ⟨relation⟩
may not start with ?.

21

• Boolean logic: sign signx, negation !x, conjunction x && y, disjunction
x || y, ternary operator x ? y : z.

• Exponentials: expx, lnx, xˆy.

• Integer factorial: factx.

• Trigonometry: sinx, cosx, tanx, cotx, secx, cscx expecting their
arguments in radians, and sindx, cosdx, tandx, cotdx, secdx, cscdx
expecting their arguments in degrees.

• Inverse trigonometric functions: asinx, acosx, atanx, acotx, asecx,
acscx giving a result in radians, and asindx, acosdx, atandx, acotdx,
asecdx, acscdx giving a result in degrees.

• Extrema: max(x1, x2, . . .), min(x1, x2, . . .), abs(x).

• Rounding functions, controlled by two optional values, n (number of
places, 0 by default) and t (behavior on a tie, NaN by default):

– trunc(x, n) rounds towards zero,

– floor(x, n) rounds towards −∞,

– ceil(x, n) rounds towards +∞,

– round(x, n, t) rounds to the closest value, with ties rounded to an
even value by default, towards zero if t = 0, towards +∞ if t > 0 and
towards −∞ if t < 0.

• Random numbers: rand(), randint(m,n).

• Constants: pi, deg (one degree in radians).

• Dimensions, automatically expressed in points, e.g., pc is 12.

• Automatic conversion (no need for \number) of integer, dimension, and
skip variables to floating points numbers, expressing dimensions in points
and ignoring the stretch and shrink components of skips.

• Tuples: (x1, . . . , xn) that can be added together, multiplied or divided by
a floating point number, and nested.

An example of use could be the following:

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3}
= \fpeval{sin(3.5)/2 + 2e-3} $.

which produces the following output:

LATEX can now compute: sin(3.5)
2 +2 · 10−3 = −0.1733916138448099.

22

\inteval {⟨integer expression⟩}

The expandable command \inteval takes as its argument an integer expression
and produces a result using the normal rules of mathematics with some restric-
tions, see below. The operations recognized are +, -, * and / plus parentheses.
As this command is expandable it can be used where TEX requires a number
and for example within a low-level \edef operation to give a purely numerical
result.

This is basically a thin wrapper for the primitive \numexpr command and there-
fore has some syntax restrictions. These are:

• / denotes division rounded to the closest integer with ties rounded away
from zero;

• there is an error and the overall expression evaluates to zero whenever the
absolute value of any intermediate result exceeds 231 − 1, except in the
case of scaling operations a*b/c, for which a*b may be arbitrarily large;

• parentheses may not appear after unary + or -, namely placing +(or -(
at the start of an expression or after +, -, *, / or (leads to an error.

An example of use could be the following.

\LaTeX{} can now compute: The sum of the numbers is $\inteval{1 + 2 + 3}$.

which results in “LATEX can now compute: The sum of the numbers is 6.”

\dimeval {⟨dimen expression⟩} \skipeval {⟨skip expression⟩}

Similar to \inteval but computing a length (dimen) or a rubber length (skip)
value. Both are thin wrappers around the corresponding engine primitives,
which makes them fast, but therefore shows the same syntax peculiars as dis-
cussed above. Nevertheless, in practice they are usually sufficient. For example

\NewDocumentCommand\calculateheight{m}{%
\setlength\textheight{\dimeval{\topskip+\baselineskip*\inteval{#1-1}}}}

sets the \textheight to the appropriate value if a page should hold a specific
number of text lines. Thus after \calculateheight{40} it is set to 478.0pt,
given the values \topskip (10.0pt) and \baselineskip (12.0pt) in the current
document.

6 Case changing

\MakeUppercase [⟨keyvals⟩] {⟨text⟩}
\MakeLowercaes [⟨keyvals⟩] {⟨text⟩}
\MakeTitlecase [⟨keyvals⟩] {⟨text⟩}

TEX provides two primitives \uppercase and \lowercase for changing the case
of text. However, these have a range of limitations: they only change the case of

23

explicit characters, do not account for the surrounding context, do not support
UTF-8 input with 8-bit engines, etc. To overcome this problem, LATEX provides
the commands \MakeUppercase, \MakeLowercase and \MakeTitlecase: these
offer significant enhancement over the TEX primitives. These commands are
engine-robust (\protected), and so can be used in moving arguments.

Upper- and lower-casing are well-understood in general conversation. Title-
casing here follows the definition given by the Unicode Consortium: the first
character of the input will be converted to (broadly) uppercase, and the rest of
the input to lowercase. The full range of Unicode UTF-8 input can be supported.

\MakeUppercase{hello WORLD ßüé} HELLO WORLD SSÜÉ
\MakeLowercase{hello WORLD ßüé} hello world ßüé
\MakeTitlecase{hello WORLD ßüé} enhello WORLD ßüé

The case-changing commands take an optional argument which can be used to
tailor the output. This optional argument accepts the key locale, also available
under the alias lang, which can be used to give a language identifier in BCP-47
format. This is then applied to select language-specific features during case-
changing.

For titlecasing, the key words may also be used: this takes a choice of first or
all. The standard setting is first, and means that only the very first “letter”
is (broadly) uppercased. The alternative, all, means that the input is divided
at each space, and for each word that results, the first letter is uppercased. For
example

\MakeTitlecase[words = first]{some words}
\MakeTitlecase[words = all]{some words}

gives “Some words Some Words”.

The input given to these commands is “expanded” before case changing is ap-
plied. This means that any commands within the input that convert to pure text
will be case changed. Mathematical content is automatically excluded, as are
the arguments to the commands \label, \ref, \cite, \begin and \end. Addi-
tional exclusions can be added using the command \AddToNoCaseChangeList.
Input can be excluded from case changing using the command \NoCaseChange.

\MakeUppercase{Some text $y = mx + c$} SOME TEXT y = mx+ c
\MakeUppercase{\NoCaseChange{iPhone}} iPhone

To allow robust commands to be used within case changing and to produce the
expected output, two additional control commands are available. \CaseSwitch
allows the user to specify the result for the four possible cases

• No case changing

• Uppercasing

• Lowercasing

24

• Titlecasing (only applies for the start of the input)

The command \DeclareCaseChangeEquivalent provides a way to substitute
a command by an alternative version when it is found inside a case chang-
ing situation. There are three commands for customising the case changing of
codepoints

\DeclareLowercaseMapping [⟨locale⟩] {⟨codepoint⟩} {⟨output⟩}
\DeclareTitlecaseMapping [⟨locale⟩] {⟨codepoint⟩} {⟨output⟩}
\DeclareUppercaseMapping [⟨locale⟩] {⟨codepoint⟩} {⟨output⟩}

All three take a ⟨codepoint⟩ (as an integer expression) and will result in the
⟨output⟩ being produced under the appropriate case changing operation. The
optional ⟨locale⟩ can be given if the mapping should only apply to a specific
one: this is given in BCP-47 format (https://en.wikipedia.org/wiki/IETF_
language_tag). For example, the kernel customises the mapping for U+01F0
(̌j) when uppercasing in 8-bit engines:

\DeclareUppercaseMapping{"01F0}{\v{J}}

as there is no pre-composed J̌ character, and this is problematic if the engine
does not support Unicode natively. Similarly, to set a locale xx to behave in the
same way as Turkish and retain the difference between dotted- and dotless-i,
one could use for example

\DeclareLowercaseMapping[xx]{"0049}{\i}
\DeclareLowercaseMapping[xx]{"0130}{i}
\DeclareUppercaseMapping[xx]{"0069}{\.{I}}
\DeclareUppercaseMapping[xx]{"0131}{I}

7 Support for problem solving

\listfiles [⟨options⟩]

If this command is placed in the preamble then a list of the files read in (as
a result of processing the document) will be displayed on the terminal (and in
the log file) at the end of the run. Where possible, a short description will also
be produced. These descriptions will (hopefully) include the descriptions, dates
and version numbers for package and class files.

Sometimes, it may be that a local edit has been made to a package or class file (or
rather a copy of such a file). To allow these cases to be identified, \listfiles
takes an optional argument which allows adjustment of the information printed
using a key–value approach

hashes Adds the MD5 hash for each file to the information printed

sizes Adds the file size for each file to the information printed

25

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag

Note that as Windows and Unix use different line endings (LF versus LF CR),
the hashes and file sizes from the two systems will not be the same. As such,
you should compare these values between operating systems of the same type.

Warning : this command will list only files which were read using LATEX com-
mands such as \input{⟨file⟩} or \include{⟨file⟩}. If the file was read using the
primitive TEX syntax \input file (without { } braces around the file name)
then it will not be listed; failure to use the LATEX form with the braces can
cause more severe problems, possibly leading to overwriting important files, so
always put in the braces.

26

	Contents
	1 Introduction
	2 Creating document commands and environments
	2.1 Overview
	2.2 Describing argument types
	2.3 Modifying argument descriptions
	2.4 Creating document commands and environments
	2.5 Optional arguments
	2.6 Spacing and optional arguments
	2.7 `Embellishments'
	2.8 Testing special values
	2.9 Auto-converting to key–value format
	2.10 Argument processors
	2.11 Body of an environment
	2.12 Fully-expandable document commands
	2.13 Commands at the start of tabular cells
	2.14 Using the verbatim argument types
	2.15 Typesetting verbatim-like material
	2.16 Verbatim environments
	2.17 Performance
	2.18 Details about argument delimiters
	2.19 Creating new argument processors

	3 Copying and showing (robust) commands and environments
	4 Preconstructing command names (or otherwise expanding arguments)
	5 Expandable floating point (and other) calculations
	6 Case changing
	7 Support for problem solving

