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1 Introduction

Global Nuclear Run On and Sequencing (GRO-seq) was developed for comprehensively map transcriptional activity in
cells [1, 2]. GRO-seq, which provides a genome wide ‘map’ of the position and orientation of all transcriptionally active
RNA polymerases, has become increasingly widely used in recent years because it has numerous advantages compared
to alternative methods of transcriptome profiling, such as expression microarrays and RNA-seq. Among these, GRO-
seq provides information on instantaneous transactional responses because it detects primary transcription, as opposed
to mature, processed mRNA. In addition, because it is independent of RNA polyadenylation, processing, and stability,
GRO-seq provides extensive information on the non-coding transcriptome, including primary miRNAs, lincRNAs, enhancer
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RNAs, and potentially additional, yet undiscovered classes of transcription occurring in cells [2, 3, 4]. Thus, GRO-seq
data provides a complete and instantaneous picture of transcription, and has extensive applications in deciphering the
mechanisms of transcriptional regulation.

We have recently developed several important analytical approaches which make use of GRO-seq data to address new
biological questions. Our pipleline has been packaged and documented, resulting in the groHMM package for Bioconduc-
tor. Among the more advanced features, groHMM predicts the boundaries of transcriptional activity across the genome
de novo using a two-state hidden Markov model (HMM). Our model essentially divides the genome into “transcribed”
and “non-transcribed” regions in a strand specific manner [2]. We also use HMMs to identify the leading edge of Pol Il
at genes activated by a stimulus in GRO-seq time course data. This approach allows the genome-wide interrogation of
transcription rates in cells [5].

In addition to these advanced features, groHMM provides wrapper functions for counting raw reads [6], generating wiggle
files for visualization [7], and creating metagene (averaging) plots. groHMM takes over all aspects of analysis after reads
have been aligned to a reference genome with short-read alignment tools. Although groHMM is tailored towards GRO-
seq data, the same functions and analytical methodologies can, in principal, be applied to a wide variety of other short
read data sets since the package includes a number of easily usable and extensible functions for general short read data
analysis. This guide focuses on the most common application of the package.

2 Preparation

The groHMM package is available in the Bioconductor and can be downloaded as follows:

> source("http://bioconductor.org/biocLite.R")
> biocLite("groHMM")

The following packages are not required to use groHMM, but they are used to download annotations and evaluate
transcripts, and should be installed for this tutorial.

biocLite("GenomicFeatures")
biocLite("org.Hs.eg.db")
biocLite("edgeR")

>
>
>
> biocLite("TxDb.Hsapiens.UCSC.hg19.knownGene")

3 groHMM Workflow

3.1 Read GRO-seq Data Files

In this tutorial we will use example data from Hah et al. [2011] (GEO accession GSE27463). This experiment was
designed to assess transcriptional changes following treatment of MCF-7 cells with 17/ estradiol (E2). The data include
a time course of GRO-seq data following treatment with E2 (i.e., 0, 10, 40 and 160 min.). Two biological replicates are
available for each time point. Bed files were obtained from GEO and lifted over to hgl9 using the UCSC liftOver tool.
In order to make the package size more manageable, we have included data from chromosome 7 only in 0 and 10 min.
conditions. groHMM supports parallel processing and the number of cores to use can be set using mc.cores option.

> library(groHMM)
> options(mc.cores=getCores(4))

groHMM uses the GRanges class from the GenomicRanges packages to represent a collection of genomic features,
allowing synergy with other useful packages in Bioconductor. Most of the functions in the package take at least two
arguments: ‘reads’ and ‘features’. Reads represent the genomic coordinates of a set of mapped short reads. Features
represent a set of genomic coordinates of interest such as genes, exons, or transcripts.

The example data included in this package can be loaded into R using the following commands.
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> SOmR1 <- as(readGAlignments(system.file("extdata", "SOmR1.bam",

+ package="groHMM")), "GRanges")

> SOmR2 <- as(readGAlignments(system.file("extdata", "SOmR1.bam",
+ package="groHMM")), "GRanges") # Use R1 as R2

> S40mR1 <- as(readGAlignments(system.file("extdata", "S40mR1.bam",
+ package="groHMM")), "GRanges")

> S40mR2 <- as(readGAlignments(system.file("extdata", "S40mR1.bam",
+ package="groHMM")), "GRanges") # Use R1 as R2

3.2 Create a Wiggle File

Wiggle files are created for each strand after replicates are combined in order to visualize GRO-seq data in the UCSC
genome browser. Wiggle files can be also normalized by the sequencing depth, i.e., average number of reads in the
dataset. writeWiggle function is a wrapper of export in rtracklayer for generation of wiggle/bigWig type of files.

v

# Combine replicates
SOm <- c(SOmR1, SOmR2)
S40m <- c(S40mR1, S40mR2)

v Vv

writeWiggle (reads=SOm, file="SOm_Plus.wig", fileType="wig", strand="+",
reverse=FALSE)

writeWiggle (reads=SOm, file="SOm_Minus.wig", fileType="wig", strand="-",
reverse=TRUE)

For BigWig file:

library(BSgenome.Hsapiens.UCSC.hg19)

si <- seqinfo(BSgenome.Hsapiens.UCSC.hg19)

writeWiggle (reads=SOm, file="SOm_Plus.wig", fileType="BigWig", strand="+",#

reverse=FALSE, seqinfo=si)

H R R R R

# Normalized wiggle files

expCounts <- mean(c (NROW(SOm), NROW(S40m)))

writeWiggle (reads=SOm, file="SOm_Plus_Norm.wig", fileType="wig", strand="+",
normCounts=expCounts/NROW(SOm), reverse=FALSE)

+ VVVVVVVVYV+V +YV

The resulting wiggle files can be uploaded as ‘custom tracks’ in the UCSC genome browser, or your visualization software
of choice.

3.3 Transcript Calling

In groHMM, transcribed regions are detected de novo using a two-state hidden Markov model (HMM). The model
takes GRO-seq read counts as input across the genome and divides the genome into “transcribed” and "non-transcribed”
state as shown in Figure 1. First, a single read set is generated by combining all samples for each time point. This
combined approach improves sensitivity for transcripts with low expression levels. Combined reads are used to train the
model parameters using the Baum-Welch Expectation Maximization (EM) algorithm. Each strand is modeled separately
dividing the genome into non-overlapping 50 bp windows classified as either state.

Sall <- sort(c(SOm, S40m))

# hmmResult <- detectTranscripts(Sall, LtProbB=-200, UTS=5,

# threshold=1)

# Load hmmResult from the saved previous run
load(system.file("extdata", "Vignette.RData", package="groHMM"))

>
>
>
>
>
> txHMM <- hmmResult$transcripts

v

head (txHMM)
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Figure 1: HMM calling of GRO-seq data

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | type ID
<Rle> <IRanges> <Rle> | <Rle> <character>

[1] chr7 [ 199750, 203899] + | tx chr7_199750+
[2] chr7 [ 561050, 568649] + | tx chr7_561050+
[3] chr7 [ 767600, 834149] + | tx chr7_767600+
[4] chr7 [ 852400, 941849] + | tx chr7_852400+
[5] chr7 [1176600, 1178799] + | tx chr7_1176600+
[6] chr7 [1198200, 1210799] + | tx chr7_1198200+

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The detectTranscripts function also uses two hold-out parameters. These parameters, specified by the arguments
LtProbB and UTS, represents the log-transformed transition probability of switching from transcribed state to non-
transcribed state and variance of the emission probability for reads in the non-transcribed state, respectively. Holdout
parameters are used to optimize the performance of HMM predictions on known genes.

3.4 Evaluation of Transcript Calling

Predicted transcripts are evaluated by comparison to known annotations, making the assumption that GRO-seq transcripts
should largely be in agreement with available annotations. Two types of error may occur, as described below. The HMM
parameters are evaluated by the sum of the error rates. The procedure involves collecting a set of high-confidence reference
transcripts. An annotation dataset can be constructed by downloading from the UCSC database or alternatively, pre-made
TranscriptDb objects can be used if they are available in the Bioconductor. We will use the UCSC knownGene track and
retrieve transcript annotations with GenomicFeatures [8] package.

library (TxDb.Hsapiens.UCSC.hgl19.knownGene)

kgdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene
library(GenomicFeatures)

# For refseq annotations:

# rgdb <- makeTxDbFromUCSC(genome="hg19", tablename="refGene")
# saveDb(hg19RGdb, file="hgl9RefGene.sqlite")

# rgdb <- loadDb("hgl9RefGene.sqlite")

>
>
>
>
>
>
>
> kgChr7 <- transcripts(kgdb, columns=c("gene_id", "tx_id", "tx_name"),
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+ filter=list (tx_chrom = "chr7"))
> seqlevels(kgChr7) <- seqlevelsInUse(kgChr7)

Because annotations do not provide precise cell type-specific expression information, overlapping transcripts must be
merged into a single set, in which each annotation represents the 5’- and 3’-most boundaries of genes. Different isoforms
of each gene are collapsed into one using the ENTREZID. These consensus annotations are used for the evaluation of
HMM calling.

> # Collapse overlapping annotations

> kgConsensus <- makeConsensusAnnotations (kgChr7, keytype="gene_id",
+ mc. cores=getOption("mc.cores"))

> library(org.Hs.eg.db)

> map <- select(org.Hs.eg.db,

+ keys=unlist (mcols (kgConsensus)$gene_id),

+ columns=c ("SYMBOL"), keytype=c("ENTREZID"))

> mcols (kgConsensus) $symbol <- map$SYMBOL

> mcols(kgConsensus)$type <- "gene"

There are two types of error that can be evaluated when comparing predicted transcripts with annotations. (1) The
number of transcripts overlapping two or more annotations, (i.e., these transcripts ‘merged annotations together') and
(2) the number of annotations that overlap two or more transcripts on the same strand (i.e., we say that these transcript
calls ‘dissociated a single annotation’) must be determined. The optimal tuning parameters can be found by minimizing
the sum of the two errors. This approach allows identification of the model that best fits the existing annotations and
should more precisely predict transcripts in non-annotated parts of the genome.

> e <- evaluateHMMInAnnotations (txHMM, kgConsensus)
> e$eval

merged dissociated total errorRate txSize
1 64 47 111 0.06098901 830

3.5 HMM Tuning

Here we demonstrate how the optimal value for each tuning parameters can be obtained by running HMM multiple times
over a certain range of the parameters. Among the nine test cases, both the sum of errors and error rate per called
transcript show minimal at case #7, as shown below. The variation of errors should be greater if whole chromosomes
are used. Also, a larger set of the parameters might be used in practice. This tunning step takes long time, so you may
skip it for quick review of the package.

> tune <- data.frame (LtProbB=c(rep(-100,3), rep(-200,3), rep(-300,3)),

+ UTS=rep(c(5,10,15), 3))

> Fp <- windowAnalysis(Sall, strand="+", windowSize=50)

> Fm <- windowAnalysis(Sall, strand="-", windowSize=50)

> # evals <- mclapply(seq_len(9), function(x) {

> # hmm <- detectTranscripts(Fp=Fp, Fm=Fm, LtProbB=tune$LtProbB[x],
> # UTS=tune$UTS [x])

> # e <- evaluateHMMInAnnotations(hmm$transcripts, kgConsensus)

> # e$eval

> # }, mc.cores=getOption("mc.cores"), mc.silent=TRUE)

> tune <- cbind(tune, do.call(rbind, evals)) # evals from the previous run

> tune

LtProbB UTS merged dissociated total errorRate txSize

1 -100 5 50 135 185 0.07769845 1391
2 -100 10 61 177 238 0.07775237 2071
3 -100 15 68 201 269 0.07441217 2625
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4 -200 b5 64 47 111 0.06098901 830
5 -200 10 74 65 139 0.06547339 1133
6 -200 15 80 76 156 0.06643952 1358
7 -300 5 69 22 91 0.05501814 664
8 -300 10 82 30 112 0.06005362 875
9 -300 15 90 41 131 0.06498016 1026

> which.min(tune$total)

(11 7

> which.min(tune$errorRate)
11 7

To robustly compare transcripts with known genes, densities representing the frequency of transcripts can be calculated
relative to their mapped gene annotations. Conceptually, the plot is divided into three distinct regions as shown in Figure
2, including upstream of known gene annotations, inside genes, and downstream of the annotated polyadenylation site.

Metrics to evaluate the degree of overlap with gene annotations focus on the region upstream of gene annotations, which
provides a measure of specificity, and the region inside of genes, which provides a measure of sensitivity. The region
downstream of the polyadenylation site is known to contain residual transcription [1] and consequently is not used to
define quality.

The metrics are defined relative to an ‘ideal’ transcript caller, which takes the form of a step function (i.e., red line in
the plot). Our quality metrics represent the following (see the plot below for a graphical representation):

1. true positive; gene body (TP) = (gene annotation area under the curve) /(max area for matched transcripts),

2. false negative; gene body (FN) =1 - TP,

3. 5’ false positive; upstream region (5'FP) = (5’ overhang area under the curve) /(max area for matched transcripts),
4. 5’ true negative; upstream region (5 TN) = TP - 5'FP.

We constrained 5'FP and 5’ TN so that their sum to be TP in order to use the upstream region only if positive number
of transcipts are called in the gene body for the calucation of the quality metrics. Note that these quality metrics
are conceptually very similar to true positive, true negative, false positive and false negative, respectively. During the
comparison, only expressed annotations are used and genes either too small or too large in size are excluded. And also
size of transcripts and annotations are scaled to a smaller unit, i.e., 1K for a visual representation. Here best overlapped
annotations or transcripts are used for either ‘merged annotations’ or ‘dissociated a single annotation’ type of error. Final
quality metrics are represented as TUA (Transcription Unit Accuracy).

> getExpressedAnnotations <- function(features, reads) {

+ fLimit <- limitToXkb(features)

+ count <- countOverlaps(fLimit, reads)

+ features <- features/[count!=0,]

+ return(features[(quantile(width(features), .05) < width(features))
+ & (width(features) < quantile(width(features), .95)),]1)}

> conExpressed <- getExpressedAnnotations(features=kgConsensus,reads=Sall)

> td <- getTxDensity(txHMM, conExpressed, mc.cores=getOption("mc.cores"))

Merged annotations: 51

Dissociated a single annotation: 35
Overlaps between transcript and annotation:
Total = 494 Used for demsity = 389

u <- par("usr")

lines(c(u[1], 0, 0, 1000, 1000, u[2]), c(0,0,u[4]-.04,ul4]-.04,0,0),
col="red")

legend("topright", 1ty=c(1,1), col=c(2,1), c("ideal", "groHMM"))

text (c(-500,500), c(.05,.5), c("FivePrimeFP", "TP"))

td

vV V.V + VvV
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Figure 2: Transcript Density Plot
$FivePrimeFP

[1] 0.1175103

$TP
[1] 0.7902918

$PostTTS
[1] 0.3441388

$TUA
[1] 0.8172262

3.6 Working with non-mammalian Genomes

If your target of study is non-mammalian, you can retrieve the relevant annotations from the Bioconductor if they are
supported. You can check the availability with the function supportedUCSCtable in GenomicsFeautes. If the organism
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is not supported, you can still build consensus annotations by directly downloading the annotation table for the organism
from the UCSC genome browser. The following command line shows the mysql query in linux to download protein-coding
RefSeq genes for all chromosomes except chrM for C. Elegans saving into refgene.bed file. You can find more information
about using MySQL for the UCSC genome browser at https://genome.ucsc.edu/goldenPath /help/mysql.html.

> # mysql --user=genome --host=genome-mysql.cse.ucsc.edu cel0 -e \

> # ‘"select chrom, txStart, txEnd, name, exonCount, strand, name2 from refGene \

> #  where chrom not like chrom!='chrM' and cdsStart != cdsEnd" | tail -n +1 > refgene.bed
>

> # G <- read.table("refgene.bed", header=TRUE, stringsAsFactors=FALSE, sep="\t")

> # ce <- GRanges(G$chrom, IRanges(G$txStart, G$txEnd), strand=G$strand, \

> # access=G$name, gene_id=G$name2)

> # ceConsensus <- makeConsensusAnnotations(ce, keytype='"gene_id", \

> # mc. cores=getOption("mc.cores"))

As for transcript calling, the default values for detectTranscripts were set for mammalian genome. In case of C.
Elegans genome, it is much smaller than human genome and the genes are more tightly located. So we recommend to
explore higher values for the transition probability from the transcribed to non-transcribed state. For example, you can
use i.e., values >-50 instead of -200 for LtProbB.

3.7 Repairing Transcript Calling with Annotations

Prediction of transcripts by the HMM is not perfect. Discrepancies with the annotations will occur even after the
parameters are optimally tuned. Transcript calls can be ‘fixed’ for known types of error by (1) breaking transcripts that
have merged annotations and (2) combining transcripts that have dissociated a single annotation. The following method
will generate a final set of transcripts for further analysis.

> bPlus <- breakTranscriptsOnGenes (txHMM, kgConsensus, strand="+")
19 transcripts are broken into 46
> bMinus <- breakTranscriptsOnGenes (txHMM, kgConsensus, strand="-")
14 transcripts are broken into 32

> txBroken <- c(bPlus, bMinus)
> txFinal <- combineTranscripts (txBroken, kgConsensus)

87 transcripts are combined to 34

> tdFinal <- getTxDensity(txFinal, conExpressed, mc.cores=getOption("mc.cores"))

3.8 Differential Analysis with edgeR

There are several packages in Bioconductor for differential expression analysis such as DESeq, baySeq, DEGSeq, or edgeR.
edgeR [9] is used for this demonstration. Differential expression analysis can be done using either by called transcripts or
known annotations depending on the nature of your research question. The procedures are quite similar except reads are
counted using the genomic locations of either called transcript or known annotations. For longer transcripts or annotated
genes, we use a window of +1 to +13 kb from the transcription start site (TSS), which was chosen in order to exclude
reads from RNA polymerases engaged at the promoter and to allow enough time for the elongation of newly initiated
Pol Il (See Hah et al., 2011). However, variations can be used, including the entire length of the called or annotated
transcripts.

> # For called transcripts

> library(edgeR)

> txLimit <- limitToXkb(txFinal)

> ctSOmR1 <- countOverlaps(txLimit, SOmR1)
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ctSOmR2 <- countOverlaps(txLimit, SOmR2)

ctS40mR1 <- countOverlaps (txLimit, S40mR1)

ctS40mR2 <- countOverlaps(txLimit, S40mR2)

pcounts <- as.matrix(data.frame(ctSOmR1, ctSOmR2, ctS40mR1, ctS40mR2))
group <- factor(c("SOm", "SOm", "S40m", "S40m"))

lib.size <- c(NROW(SOmR1), NROW(SOmR2), NROW(S40mR1), NROW(S40mR2))
d <- DGEList(counts=pcounts, lib.size=lib.size, group=group)

d <- estimateCommonDisp (d)

et <- exactTest(d)

de <- decideTestsDGE(et, p=0.001, adjust="fdr")

detags <- seq_len(NROW(d)) [as.logical(de)]

# Number of transcripts regulated at 40m

cat("up: ",sum(de==1), " down: ", sum(de==-1), "\n")

186 down: 152

plotSmear(et, de.tags=detags)
# 2 fold up or down
abline(h = c¢(-1,1), col="blue")

# For ucsc knownGenes
kgChr7 <- transcripts(kgdb, columns=c("gene_id", "tx_id", "tx_name"),
filter=list (tx_chrom="chr7"))

map <- select(org.Hs.eg.db,
keys=unique (unlist (mcols (kgChr7) $gene_id)),
columns=c ("SYMBOL"), keytype=c("ENTREZID"))

missing <- elementNROWS (mcols(kgChr7) [, "gene_id"]) == 0

kgChr7 <- kgChr7[!missing,]

inx <- match(unlist (mcols (kgChr7)$gene_id), map$ENTREZID)

mcols (kgChr7)$symbol <- map[inx,"SYMBOL"]

kgLlimit <- limitToXkb (kgChr7)

ctSOmR1 <- countOverlaps(kgLimit, SOmR1)

ctSOmR2 <- countOverlaps (kgLimit, SOmR2)

ctS40mR1 <- countOverlaps (kgLimit, S40mR1)

ctS40mR2 <- countOverlaps (kgLimit, S40mR2)

counts <- as.matrix(data.frame(ctSOmR1, ctSOmR2, ctS40mR1, ctS40mR2))

group <- factor(c("SOm", "SOm", "S40m", "S40m"))

lib.size <- c(NROW(SOmR1), NROW(SOmR2), NROW(S40mR1), NROW(S40mR2))

d <- DGEList (counts=counts, lib.size=1ib.size, group=group)

d <- estimateCommonDisp (d)

et <- exactTest(d)

de <- decideTestsDGE(et, p=0.001, adjust="fdr")

detags <- seq_len(NROW(d)) [as.logical(de)]

symbols <- mcols (kgChr7)$symbol

# Number of unique genes regulated at 40m

cat("up: ", NROW(unique (symbols[de==1])), "\n")

up: 150

> cat("down: ", NROW(unique(symbols[de==-1])), "\n")
down: 111

> plotSmear (et, de.tags=detags)

>

abline(h = ¢(-1,1), col="blue")
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3.9 Metagene Analysis

Metagenes show the distribution of reads near TSS of a set of regulated genes (or some other alignable genomic features
of interest). It can be thought as a smoothed average of read density weighted by expression over the set of TSS. The
runMetaGene function has option for sampling. If TRUE, 10% of the transcription units are sampled with replacement
1,000 times and median value at each position in the transcription unit over the samples is used for final metagene result.
Using subsampling results in an image is more robust to outliers, especially when the size of sample is relatively small.

> upGenes <- kgChr7[de==1,]

> expReads <- mean(c(NROW(SOm), NROW(S40m)))

> # Metagene around TSS

> mgOm <- runMetaGene (features=upGenes, reads=SOm, size=100,

+ normCounts=expReads/NROW(SOm), sampling=FALSE,

+ mc. cores=getOption("mc.cores"))

> mg40m <- runMetaGene (features=upGenes, reads=540m, size=100,

+ normCounts=expReads/NROW (S40m), sampling=FALSE,
+ mc. cores=getOption("mc.cores"))
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Figure 4: Metagenes

plotMetaGene <- function(P0S=c(-10000:+9999), mg, MIN, MAX){

}

plot (POS, mg$sense, col="red", type="h", xlim=c(-5000, 5000),
ylim=c(floor (MIN),ceiling(MAX)), ylab="Read Density",
xlab="Position (relative to TSS)")

points(P0OS, (-1*rev(mg$antisense)), col="blue", type="h")
abline (mean (mg$sense [5000:8000]), 0, lty="dotted")

MAX <- max(c(mgOm$sense, mg4Om$sense))

MIN <- -1*max(c(mgOm$antisense, mg4Om$antisense))
plotMetaGene (mg=mgOm, MIN=MIN, MAX=MAX)
plotMetaGene (mg=mg40m, MIN=MIN, MAX=MAX)
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v

toLatex (sessionInfo())

R version 3.3.1 (2016-06-21), x86_64-w64-mingw32

e Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C, LC_TIME=English_United States.1252
Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

Other packages: AnnotationDbi 1.36.0, Biobase 2.34.0, BiocGenerics 0.20.0, Biostrings 2.42.0,
GenomelnfoDb 1.10.0, GenomicAlignments 1.10.0, GenomicFeatures 1.26.0, GenomicRanges 1.26.0,
IRanges 2.8.0, MASS 7.3-45, Rsamtools 1.26.0, S4Vectors 0.12.0, SummarizedExperiment 1.4.0,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2, XVector 0.14.0, edgeR 3.16.0, groHMM 1.8.0, limma 3.30.0,
org.Hs.eg.db 3.4.0, rtracklayer 1.34.0

Loaded via a namespace (and not attached): BiocParallel 1.8.0, BiocStyle 2.2.0, DBI 0.5-1, Matrix 1.2-7.1,
RCurl 1.95-4.8, RSQLite 1.0.0, XML 3.98-1.4, biomaRt 2.30.0, bitops 1.0-6, grid 3.3.1, lattice 0.20-34,
locfit 1.5-9.1, tools 3.3.1, zlibbioc 1.20.0
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