MCRconfusion {MCRestimate}R Documentation

Summary tables for MCRestimate objects

Description

MCRwrongsamples returns a matrix with all the samples that have a higher frequency of being predicted as a member of a wrong class than of the correct class for at least one classification method. MCRconfusion summarizes the result of the vote matices

Usage

MCRwrongsamples(x,
         col.names=names(x),
         rownames.from.object=TRUE,
         subgroup=NULL,
         freq=FALSE)

MCRconfusion(x,
             col.names=names(x),
             row.names=NULL)     

Arguments

x List of objects of S3 class MCRestimate
col.names Vector of strings used for column names. The length must match the number of objects in x
rownames.from.object Logical. If TRUE then the sample names of the MCRestimate object in x are used as row names
subgroup Logical. If TRUE then only the samples which belongs to the specified group are listed in the table
freq Logical. If TRUE then the frequency with which each sample in the table has been misclassified will be printed.
row.names Vector of strings used for row names. If not specified the names of the groups are used

Value

MCRwrongsamples returns a matrix and MCRconfusion returns a confusion matrix.

Author(s)

Markus Ruschhaupt mailto:m.ruschhaupt@dkfz.de

See Also

MCRestimate

Examples

library(MCRestimate)
data(eset)
result1 <- MCRestimate(eset,"cov1",classification.fun="RF.wrap",cross.outer=2,cross.repeat=2)
result2 <- MCRestimate(eset,"cov1",classification.fun="PAM.wrap",poss.parameters=list(threshold=c(0.5,1)),cross.inner=3,cross.outer=2,cross.repeat=2)
MCRwrongsamples(list(result1,result2),subgroup=1,col.names=c("Random Forest","PAM"))
MCRconfusion(list(result1,result2),col.names=c("Random Forest","PAM"))

[Package MCRestimate version 1.4.0 Index]