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1 Abstract

In studies about differential gene expression between different clinical diagnoses
the main interest may often not be in single genes but rather in groups of genes
that are associated with a pathway or have a common location in the genome.
In such cases it may be better to perform a global test because the problems of
multiple testing can be avoided. The approach presented here is an ANCOVA
global test on phenotype main effect and gene–phenotype interaction.

Testing many pathways simultaneously is also possible. This, of course,
causes again need for correction for multiple testing. Besides the standard ap-
proaches for correction we introduce a closed testing procedure in which the
experiment–wise error rate equals the required level of confidence of the overall
test.

This document was created using R version 2.2.0 and versions 1.4.0 and 3.2.0
of the packages GlobalAncova and globaltest respectively.

2 Introduction

The ANCOVA global test is a simultaneous test on phenotype main effect and
gene–phenotype interaction in a two–way layout linear model. If the mean
expression level for at least one gene differs between groups the global null
hypothesis, which is the intersection of all null hypotheses for the single genes,
is violated. As our test is based on the sum of gene-wise reduction in sum of
squares due to phenotype, all systematic differences in gene expression between
phenotypes equally contribute to the power of the test.

Single genes are not, in general, the primary focus of gene expression experi-
ments. The researcher might be more interested in relevant pathways, functional
sets or genomic regions consisting of several genes. Most of the current methods
for studying pathways analyse differential expression of single genes. In these
methods pathways where many genes show minor changes in their expression
values may not be identified. Goeman’s global test and the ANCOVA global
test were designed to address this issue.

Applying global tests for differential expression in pathways substantially
reduces the number of tests compared to gene-wise multiple testing. The amount
of correction for multiple testing decreases. Function (KEGG, GO) or location
(chromosome, cytoband) could be used as grouping criteria, for example.

We want to compare our method with the global test of Goeman et al., 2004
[1]. Therefore text and examples in this document follow to a certain extent
the vignette presented in the R-package globaltest . Our function GlobalAncova
tests whether the expectation of expression levels differs between two biological
entities for a given group of genes. This vignette has its focus on the practical
use of the test. For more details about the mathematical background and the
interpretation of results, we refer to the paper by Mansmann and Meister, 2005
[3].

This document shows the functionality of the R-package GlobalAncova. The
datasets, all necessary R–packages and our package GlobalAncova are available
from the Bioconductor website (www.bioconductor.org).

First we load the packages and data we will use.
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> library(GlobalAncova)

> library(globaltest)

> library(golubEsets)

> library(hu6800)

> library(vsn)

> library(multtest)

> data(golubMerge)

> golubM <- update2MIAME(golubMerge)

> golubX <- vsn(golubM)

This creates a dataset golubX, which is of the format exprSet , the standard
format for gene expression data in BioConductor. It consists of 7129 genes
and 72 samples. We used vsn to normalize the data. Any other normaliza-
tion method may be used instead. From several phenotype variables we use
“ALL.AML” as the clinical diagnoses of interest. ALL and AML are two types
of acute leukemia. There are 47 patients with ALL and 25 with AML.

3 Global Testing of a Single Pathway

3.1 Cell Cycle Pathway

Suppose we are interested in testing whether AML and ALL have different gene
expression patterns for certain pathways, for example from the KEGG database.

All Genes
We start by applying our test to all genes in the Golub dataset so that differences
in the overall gene-expression pattern can be demonstrated.

> gr <- as.numeric(golubX$ALL.AML == "ALL")

> ga.all <- GlobalAncova(xx = exprs(golubX), group = gr,

+ covars = NULL, perm = 100, test.genes = NULL)

The first input xx is a 7129 × 72 matrix that contains the expression values
of all genes and samples. The second input group is a vector that defines the
clinical diagnosis for the 72 patients. It must be coded as 0–1. More than
two clinical groups or even continuous phenotype coding might be considered in
future versions of the package.

To avoid alpha–inflation due to correlated data and effects of non–normality
of the data tests for significance of the resulting F–ratios are performed using
a permutation test approach. The argument perm defines the number of per-
mutations. The number of permutations is 10,000 for default but in the current
version the test for many genes can take quite a long time with 10,000 permuta-
tions. Here we set perm to just 100 or 1000 so that creating this vignette will not
last too long. For getting more reliable results one should recompute the exam-
ples with more permutations. We are currently looking for a reliable asymptotic
test as a chance to get around with too time consuming permutations.

The result is a typical ANOVA table with information only for the interaction
term of interest. Besides the classical F–test p–values, there are also p–values
from the permutation test.

> ga.all
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$ANOVA.table
SS DF MS

Total 1142401.25 513287 2.2256579
Genes adjusted 945036.99 7128 132.5809463
GroupXGenes 14800.04 7129 2.0760336
Residual 182564.22 499030 0.3658382

$test.result.GroupXGenes

F.value 5.674732
p.value.perm 0.000000
p.value.theo 0.000000

From this result we conclude that the overall gene expression profile for all
7129 genes is associated with the clinical outcome. This means that samples
with different AML/ALL status tend to have different expression profiles. We
expect most pathways (especially the ones containing many genes) also to be
associated with the phenotype groups.

If we apply Goeman’s global test we get

> gt.all <- globaltest(golubX, "ALL.AML")

> gt.all

Global Test result:
Data: 72 samples with 7129 genes; 1 pathway tested
Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value
1 7129 7129 53.992 10 1.9035 5.1616e-35

Both tests show that the data contain overwhelming evidence for differential
gene expression between AML and ALL.

Cell Cycle Pathway
Now we ask the more specific question of whether there is evidence for differential
gene expression between both diagnoses restricted to genes belonging to the cell
cycle pathway. First we load all KEGG pathways.

> kegg <- as.list(hu6800PATH2PROBE)

The list kegg consists of 153 pathways. Each pathway is represented by a
vector of gene names. We are mainly interested in the cell cycle pathway which
has the identifier “04110” in the KEGG database. It corresponds to 92 probe
sets on the hu6800 chip.

> cellcycle <- kegg[["04110"]]

We apply the global test to this pathway using the option test.genes.

> ga.cc <- GlobalAncova(exprs(golubX), gr, test.genes = cellcycle,

+ perm = 1000)

> ga.cc
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$ANOVA.table
SS DF MS

Total 10688.1921 6623 1.6137992
Genes adjusted 8091.5805 91 88.9184671
GroupXGenes 244.1049 92 2.6533146
Residual 2352.5066 6440 0.3652961

$test.result.GroupXGenes

F.value 7.263464
p.value.perm 0.000000
p.value.theo 0.000000

Also with globaltest we get a very small p–value

> gt.cc <- globaltest(golubX, "ALL.AML", cellcycle)

> gt.cc

Global Test result:
Data: 72 samples with 7129 genes; 1 pathway tested
Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value
1 92 92 69.005 10.195 3.2811 1.4669e-18

The test results clearly indicate that the expression pattern of the cell cycle
pathway is different between the two clinical groups.

Adjusting for Covariates
Covariate information is incorporated by specifying the covars option. For ex-
ample if we want to adjust for Source, the institution that provided the samples,
we can do this by

> ga.cc.source <- GlobalAncova(exprs(golubX), gr, covars = golubX$Source,

+ test.genes = cellcycle, perm = 1000)

> ga.cc.source

$ANOVA.table
SS DF MS

Total 10688.1921 6623 1.6137992
Genes adjusted 8293.5090 183 45.3197210
GroupXGenes 121.3187 92 1.3186816
Residual 2273.3644 6348 0.3581229

$test.result.GroupXGenes

F.value 3.682204
p.value.perm 0.000000
p.value.theo 0.000000

The source of the samples apparently has some explanatory effect on the
outcome resulting in a smaller F–ratio than in the model without adjusting.
But the influence of the genes is still highly significant.

With the globaltest we get a higher p–value.
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> gt.cc.source <- globaltest(golubX, ALL.AML ~ Source,

+ cellcycle)

> gt.cc.source

Global Test result:
Data: 72 samples with 7129 genes; 1 pathway tested
Model: logistic, ALL.AML ~ Source
Adjusted: 11.5 % of variance of Y remains after adjustment

genes tested Statistic Q Expected Q sd of Q p-value
1 92 92 17.983 10.924 3.7995 0.047077

Permutation based p–values can also be obtained with Goeman’s test, how-
ever only when covariates are absent.

3.2 p53–Signalling Pathway

> data(p53.signalling)

> data(group.info)

> data(cov.info)

We present another example from a study on different stages of colon cancer.
The data is available with the GlobalAncova package. This example illustrates
the role of covariates in the context of global testing in more detail. The tumour
suppressor protein p53 contributes as a transcription factor to cell cycle arrest
and apoptosis induction. Therefore, the p53-signalling pathway was selected
as a candidate, where differential expression between two relevant prognostic
groups defined by UICC II and UICC III stage of colon carcinoma probes was
expected. The dataset p53.signalling contains 45 genes of the pathway that
are present on the Affymetrix chip HU133a for 36 samples, 18 for each stage
of cancer. The group information for each sample is stored in group.info. In
cov.info there is also information about the gender of the patients and the
location of the tumors.

> data(p53.signalling)

> data(group.info)

> data(cov.info)

Adjusting for Covariates
First we compute the Global Ancova without adjusting for covariates and get a
significant result.

> set.seed(123)

> ga.table.1 <- GlobalAncova(xx = p53.signalling, group = group.info,

+ perm = 1000)

> ga.table.1

$ANOVA.table
SS DF MS

Total 4740.37616 1619 2.9279655
Genes adjusted 4502.83829 44 102.3372338
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GroupXGenes 14.72441 45 0.3272091
Residual 222.81346 1530 0.1456297

$test.result.GroupXGenes

F.value 2.246857e+00
p.value.perm 5.000000e-03
p.value.theo 5.778971e-06

Including the covariates improves the separation of expression values by
UICC stage.

> ga.table.2 <- GlobalAncova(p53.signalling, group.info,

+ covars = cov.info, perm = 1000)

> ga.table.2

$ANOVA.table
SS DF MS

Total 4740.37616 1619 2.9279655
Genes adjusted 4516.40461 134 33.7045120
GroupXGenes 18.07929 45 0.4017619
Residual 205.89226 1440 0.1429807

$test.result.GroupXGenes

F.value 2.809902e+00
p.value.perm 1.000000e-03
p.value.theo 3.608313e-09

The test results illustrate that the theoretical p–values are probably over–
optimistic.

The globaltest also reveals better separation by including covariate informa-
tion. Regarding the p–values this test is more optimistic here.

> colnames(p53.signalling) <- seq(1:dim(p53.signalling)[2])

> names(group.info) <- colnames(p53.signalling)

> gt.table.1 <- globaltest(p53.signalling, group.info)

> gt.table.1

Global Test result:
Data: 36 samples with 45 genes; 1 pathway tested
Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value
1 45 45 22.316 10 3.965 0.0069788

> gt.table.2 <- globaltest(p53.signalling, group.info,

+ adjust = as.data.frame(cov.info))

> gt.table.2

Global Test result:
Data: 36 samples with 45 genes; 1 pathway tested
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Model: logistic, Y ~ sex + loc
Adjusted: 87 % of variance of Y remains after adjustment

genes tested Statistic Q Expected Q sd of Q p-value
1 45 45 28.71 10 4.1803 0.00073116

Sex or Location of the Tumor as Phenotype
In contrast to the results above using stage as the clinical outcome if we had
used sex or location as phenotype there would be no evidence of differential
gene expression between the respective groups. For Goeman’s test we get again
similar results with slightly smaller p–values.

> ga.table.sex <- GlobalAncova(p53.signalling, group = cov.info[,

+ "sex"], perm = 1000)

> ga.table.loc <- GlobalAncova(p53.signalling, group = cov.info[,

+ "loc"], perm = 1000)

> gt.table.sex <- globaltest(p53.signalling, cov.info[, "sex"])

> gt.table.loc <- globaltest(p53.signalling, cov.info[, "loc"])

> ga.table.sex

$ANOVA.table
SS DF MS

Total 4740.376159 1619 2.9279655
Genes adjusted 4502.838286 44 102.3372338
GroupXGenes 8.977898 45 0.1995089
Residual 228.559975 1530 0.1493856

$test.result.GroupXGenes

F.value 1.33552929
p.value.perm 0.18400000
p.value.theo 0.06917166

> ga.table.loc

$ANOVA.table
SS DF MS

Total 4740.376159 1619 2.9279655
Genes adjusted 4502.838286 44 102.3372338
GroupXGenes 5.740071 45 0.1275571
Residual 231.797802 1530 0.1515018

$test.result.GroupXGenes

F.value 0.8419512
p.value.perm 0.6040000
p.value.theo 0.7625854

> gt.table.sex
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Global Test result:
Data: 36 samples with 45 genes; 1 pathway tested
Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value
1 45 45 13.606 10 3.965 0.17162

> gt.table.loc

Global Test result:
Data: 36 samples with 45 genes; 1 pathway tested
Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value
1 45 45 8.6994 10 4.0429 0.57929

4 Testing Several Pathways Simultaneously

Systems biology involves the study of mechanisms underlying complex biological
processes as integrated systems of many diverse interacting components, often
referred to as pathways.

We regard the possibility to investigate differential gene expression simulta-
neously for several of those pathways as a contribution towards understanding
biological relevant relations.

The user can apply GlobalAncova to compute p–values for a couple of path-
ways with one call by specifying the test.genes option. The members of each
pathway to be tested must belong to genes in the expression–matrix. Afterwards
a suitable correction for multiple testing has to be applied. An alternative based
on the closed testing approach is described later.

Suppose for example that we want to test the first five KEGG pathways with
the Golub data. We proceed as follows.

> ga.kegg <- GlobalAncova(exprs(golubX), gr, test.genes = kegg[1:5],

+ perm = 1000)

> ga.kegg

genes F.value p.value.perm p.value.theo
00640 28 3.9394 0.004 0.0000
04210 93 4.5758 0.000 0.0000
00471 2 1.3353 0.251 0.2664
00472 2 1.2284 0.280 0.2959
00642 8 3.7178 0.013 0.0003

The result is a matrix whose rows correspond to the KEGG pathways. Note
that if a pathway consists of a single gene a squared t–statistic which is equiv-
alent to a F–statistic is computed. Also in this case a permutation test is
performed.

With the globaltest we get a similar matrix.

> gt.kegg <- globaltest(golubX, "ALL.AML", kegg[1:5])
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> gt.kegg

Global Test result:
Data: 72 samples with 7129 genes; 5 pathways tested
Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value
00640 28 28 37.8880 9.8766 5.7664 8.8038e-04
04210 93 93 40.3990 9.1447 2.7308 1.3043e-11
00471 2 2 8.7434 6.4873 6.9904 2.5877e-01
00472 2 2 5.0720 4.0848 4.8540 2.7967e-01
00642 8 8 27.8770 7.6770 5.7134 7.7599e-03

This test also works for a single gene.

4.1 Simultaneous Adjustment of p–values

Next we show how to extract p–values for correction for multiple testing. Note
however that due to the extremely high correlations between these tests, many
procedures that correct for multiple testing here are inappropriate. An appro-
priate way of adjusting would be for example the method of Holm, 1979 [2].
An alternative to such adjustments that is not affected by correlations between
tests is a closed testing procedure. For this approach you need a family of null
hypotheses that is closed under intersection. Then a single hypothesis can be re-
jected at level α if it is rejected along with all hypotheses included in it (Marcus
et al. 1976).

For the adjustment according to Bonferroni and Holm we build a vector
of the raw p–values. The function mt.rawp2adjp provides several adjusting
methods. We here display only the raw and “Holm” adjusted p–values. To
obtain the original order of the pathways we order the result of mt.rawp2adjp
according to index.

> ga.kegg.raw <- ga.kegg[1:5, 3]

> ga.kegg.adj <- mt.rawp2adjp(ga.kegg.raw)

> ga.kegg.adj$adjp[order(ga.kegg.adj$index), c("rawp", "Holm")]

rawp Holm
[1,] 0.004 0.016
[2,] 0.000 0.000
[3,] 0.251 0.502
[4,] 0.280 0.502
[5,] 0.013 0.039

Besides pathway “05020” all other pathways are significant.

4.2 Closed Testing Procedure

Closed testing procedures (Marcus et al., 1976 [4]) offer a versatile and pow-
erful approach to the multiple testing problem. Implementation is non–trivial,
therefore, the program given in this version should be regarded as a prototype.
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In order to apply the closed testing procedure we first have to create the
required family of hypotheses by building all intersections between the four
“natural” hypotheses tested above and all intersections of those new hypotheses
and so on.

The resulting family of hypotheses can be illustrated in a directed graph. The
node “1-2-3-4-5” for example stands for the global hypothesis that the genes of
all five selected pathways are not differentially expressed. Now the interesting
hypothesis “1” for example can be rejected if also the hypotheses “1-2-3-4-5”,
“1-2-3-4”, . . ., “1-3-4-5”, “1-2-3”, . . ., “1-4-5”, “1-2”, . . ., “1-5” are rejected. These
relationships are represented by the edges of the graph.

Loading required package: Rgraphviz
Loading required package: graph
Loading required package: cluster
Loading required package: Ruuid

1 2 3 4 5

1−2 1−3 1−4 1−5 2−3 2−4 2−5

1−2−3 1−2−4 1−2−5

3−4 3−5

1−3−4 1−3−5 2−3−4 2−3−5

1−2−3−4 1−2−3−5

4−5

1−4−5 2−4−5

1−2−4−5

3−4−5

1−3−4−5 2−3−4−5

1−2−3−4−5

We can compute the closed testing procedure using the function

> ga.closed <- GlobalAncova.closed(xx = exprs(golubX), group = gr,

+ test.genes = kegg[1:5], previous.test = ga.kegg, level = 0.05,

+ perm = 100)

where test.genes is again a list of pathways. In order to shorten computing
time we can provide the results of the previous application of GlobalAncova
for the pathways of interest. The option level allows to manipulate the level of
significance. perm again gives the desired number of permutations used in the
permutation test.
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The function GlobalAncova.closed provides the formed null hypotheses
(this means lists of genes to be tested simultaneously), the test results for each
pathway of interest and the names of significant and not significant pathways.
If for a pathway one single hypothesis can not be rejected there is no need to
test all the remaining hypotheses. That is why in test results of not significant
pathways the lines are filled with NA’s after a p–value > α occured.

> names(ga.closed)

[1] "new.data" "test.results" "significant" "not.significant"

> ga.closed$test.results

$"00640"
genes F.value p.value.perm p.value.theo

00640 28 3.9394 0.004 0
00640.04210 121 4.4186 0.000 0
00640.00471 30 3.8187 0.000 0
00640.00472 30 3.8588 0.000 0
00640.00642 36 3.8991 0.000 0
04210.00640.00471 123 4.3820 0.000 0
04210.00640.00472 123 4.3946 0.000 0
04210.00640.00642 129 4.3821 0.000 0
00471.00640.00472 32 3.7451 0.000 0
00471.00640.00642 38 3.8010 0.000 0
00472.00640.00642 38 3.8337 0.000 0
00471.04210.00640.00472 125 4.3586 0.000 0
00471.04210.00640.00642 131 4.3478 0.000 0
00472.04210.00640.00642 131 4.3596 0.000 0
00472.00471.00640.00642 40 3.7404 0.000 0
00472.00471.04210.00640.00642 133 4.3258 0.000 0

$"04210"
genes F.value p.value.perm p.value.theo

04210 93 4.5758 0 0
00640.04210 121 4.4186 0 0
04210.00471 95 4.5249 0 0
04210.00472 95 4.5424 0 0
04210.00642 101 4.5174 0 0
04210.00640.00471 123 4.3820 0 0
04210.00640.00472 123 4.3946 0 0
04210.00640.00642 129 4.3821 0 0
00471.04210.00472 97 4.4926 0 0
00471.04210.00642 103 4.4708 0 0
00472.04210.00642 103 4.4868 0 0
00471.04210.00640.00472 125 4.3586 0 0
00471.04210.00640.00642 131 4.3478 0 0
00472.04210.00640.00642 131 4.3596 0 0
00472.00471.04210.00642 105 4.4411 0 0
00472.00471.04210.00640.00642 133 4.3258 0 0
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$"00471"
genes F.value p.value.perm p.value.theo

00471 2 1.3353 0.251 0.2664
00640.00471 NA NA NA NA
04210.00471 NA NA NA NA
00471.00472 NA NA NA NA
00471.00642 NA NA NA NA
04210.00640.00471 NA NA NA NA
00471.00640.00472 NA NA NA NA
00471.00640.00642 NA NA NA NA
00471.04210.00472 NA NA NA NA
00471.04210.00642 NA NA NA NA
00472.00471.00642 NA NA NA NA
00471.04210.00640.00472 NA NA NA NA
00471.04210.00640.00642 NA NA NA NA
00472.00471.00640.00642 NA NA NA NA
00472.00471.04210.00642 NA NA NA NA
00472.00471.04210.00640.00642 NA NA NA NA

$"00472"
genes F.value p.value.perm p.value.theo

00472 2 1.2284 0.28 0.2959
00640.00472 NA NA NA NA
04210.00472 NA NA NA NA
00471.00472 NA NA NA NA
00472.00642 NA NA NA NA
04210.00640.00472 NA NA NA NA
00471.00640.00472 NA NA NA NA
00471.04210.00472 NA NA NA NA
00472.00640.00642 NA NA NA NA
00472.04210.00642 NA NA NA NA
00472.00471.00642 NA NA NA NA
00471.04210.00640.00472 NA NA NA NA
00472.04210.00640.00642 NA NA NA NA
00472.00471.00640.00642 NA NA NA NA
00472.00471.04210.00642 NA NA NA NA
00472.00471.04210.00640.00642 NA NA NA NA

$"00642"
genes F.value p.value.perm p.value.theo

00642 8 3.7178 0.013 3e-04
00640.00642 36 3.8991 0.000 0e+00
04210.00642 101 4.5174 0.000 0e+00
00471.00642 10 3.2909 0.040 4e-04
00472.00642 10 3.4166 0.010 2e-04
04210.00640.00642 129 4.3821 0.000 0e+00
00471.00640.00642 38 3.8010 0.000 0e+00
00471.04210.00642 103 4.4708 0.000 0e+00
00472.00640.00642 38 3.8337 0.000 0e+00
00472.04210.00642 103 4.4868 0.000 0e+00
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00472.00471.00642 12 3.0815 0.000 3e-04
00471.04210.00640.00642 131 4.3478 0.000 0e+00
00472.04210.00640.00642 131 4.3596 0.000 0e+00
00472.00471.00640.00642 40 3.7404 0.000 0e+00
00472.00471.04210.00642 105 4.4411 0.000 0e+00
00472.00471.04210.00640.00642 133 4.3258 0.000 0e+00

> ga.closed$significant

[1] "00640" "04210" "00642"

> ga.closed$not.significant

[1] "00471" "00472"

We get the same significant and not significant pathways as before.

5 Diagnostic Plots

There are two types of diagnostic plots available supporting communication and
interpretation of results of the global ANCOVA. The Plot.genes visualizes
the influence of individual genes on the test result while the Plot.subjects
visualizes the influence of individual samples. Both plots are based on the
decomposition of sums of squares.

We use again the Golub data for demonstration of the plot functions.

5.1 Gene Plot

The influence of each gene on the outcome of the test can be assessed and
visualized with a diagnostic plot generated by our function Plot.genes. It
corresponds to the function geneplot in the globaltest package. The function
Plot.genes gives a graphical display of single gene-wise analysis for all genes.
Bars are always positive as a reduction of sum of squares is always achieved in
this case. The bar height indicates the influence of the respective gene on the
test statistic. The added reference line is the residual mean square error per gene
and corresponds to the expected height of the bars under the null hypothesis
which says that the gene is not associated with the clinical outcome. Covariate
information can be included in the same way as in the GlobalAncova function
with the covars option. The bars are coloured in order to show in which of the
phenotype groups the gene has higher expression values.

The commands for creating gene plots in the GlobalAncova and the globaltest
are as follows. For facility of inspection it is useful not to plot the bars for all
genes at one time but only for a few, for example 40.

The two approaches show almost the same results. We prefer plotting hori-
zontal bars rather than vertical because we think it is easier to read off the bar
heights this way. In the group variable gr 0 represents AML and 1 the ALL
patients.

> Plot.genes(exprs(golubX)[cellcycle[1:40], ], gr)

> gp.cc <- geneplot(gt.cc)

> plot(gp.cc[1:40])

14



0 2 4 6 8 10 12 14

Reduction in Sum of Squares

G
en

es

U33841_at
U33203_s_at
U33202_s_at
M92424_at
D55716_at
D84557_at
X74795_at
X74794_at
X62153_s_at
D38073_at
D21063_at
U44378_at
U68019_at
U65410_at
U31814_at
U50079_s_at
D50405_at
L33801_at
X16416_at
U50950_at
U01877_at
U31556_at
U15642_s_at
U15641_s_at
S75174_at
D38550_at
HG2415−HT2511_at
U47677_at
S49592_s_at
M60974_s_at
U40343_at
L36844_at
U26727_at
U22398_at
HG4258−HT4528_at
U09579_at
L20320_at
X66365_at
U37022_rna1_at
M68520_athigher expression in group 0

higher expression in group 1

Figure 1: Gene Plot for the Golub data with GlobalAncova. Shown are the first 40

genes of the cell cycle pathway. The bar height indicates the influence of the respective

gene on the test statistic. The colour shows in which of the phenotype groups the gene

has higher expression values. The reference line is the residual mean square error per

gene.
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Figure 2: Gene Plot for the Golub data with globaltest . Shown are the first 40 genes

of the cell cycle pathway. The bar height indicates the influence of the respective gene

on the test statistic. The colour shows in which of the phenotype groups the gene

has higher expression values. The reference line gives the expected height of the bar

under the null hypothesis. Marks indicate with how many standard deviations the bar

exceeds the reference line.
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5.2 Subjects Plot

The function Plot.subjects visualizes the influence of the individual samples
on the test result and corresponds to the sampleplot of Goeman. The function
Plot.subjects gives information on the reduction of sum of squares per subject.
Here we sum over genes. Large reduction demonstrates a good approximation of
a subject’s gene expressions by the corresponding group means. If an individual
does not fit into the pattern of its phenotype, negative values can occur. A
small p–value will therefore generally coincide with many positive bars. If there
are still tall negative bars, these indicate deviating samples: removing a sample
with a negative bar would result in a lower p-value. Again we can use covars for
covariate adjustment. The bars are again coloured to distinguish the samples
of the two different clinical diagnoses. With the option sort it is also possible
to sort the bars with respect to the phenotype groups. Before plotting we add
the sample names to the expression matrix. Otherwise with Plot.subjects
samples would just be enumerated from 1 to 11.

We compare again the different approaches:

> colnames(exprs(golubX)) <- pData(golubX)[, 1]

> Plot.subjects(exprs(golubX), gr)

> sampleplot(gt.cc)
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Figure 3: Subjects Plot for the Golub data with GlobalAncova. The bar height

indicates the influence of the respective sample on the test result. If an individual

does not fit into the pattern of its phenotype, negative values can occur. Bars are

coloured corresponding to groups.
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Figure 4: Subjects Plot for the Golub data with globaltest . The bar height indicates

the influence of the respective sample on the test result. If an individual does not fit

into the pattern of its phenotype, negative values can occur. Bars are coloured cor-

responding to groups. The reference line shows the expected influence of the samples

under the null hypothesis. Marks on the bars indicate the standard deviation of the

influence of the sample under the null hypothesis.
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