
Imputed SNP analyses and meta-analysis with
snpMatrix

David Clayton

April 10, 2009

Getting started

The need for imputation in SNP analysis studies occurs when we have a smaller set
of samples in which a large number of SNPs have been typed, and a larger set of
samples typed in only a subset of the SNPs. We use the smaller, complete dataset
(which will be termed the training dataset) to impute the missing SNPs in the larger,
incomplete dataset (the target dataset). Examples of such applications include:

• use of HapMap data to impute association tests for a large number of SNPs,
given data from genome-wide studies using, for example, a 500K SNP array,
and

• meta-analyses which seek to combine results from two platforms such as the
Affymetrix 500K and Illumina 550K platforms.

Here we will not use a real example such as the above to explore the use of snpMatrix
for imputation, but generate a fictitious example using the data analysed in earlier
exercises. This is particularly artificial in that we have seen that these data suffer
from extreme heterogeneity of population structure.

We start by attaching the required libraries and accessing the data used in the
exercises:

> library(snpMatrix)

> library(hexbin)

> data(for.exercise)

Next we select alternate SNPs to be potentially missing or present in the target
dataset:

> sel <- seq(1, ncol(snps.10), 2)

> missing <- snps.10[, sel]

> present <- snps.10[, -sel]

> missing

A snp.matrix with 1000 rows and 14251 columns

Row names: jpt.869 ... ceu.464

Col names: rs7909677 ... rs12218790

1

> present

A snp.matrix with 1000 rows and 14250 columns

Row names: jpt.869 ... ceu.464

Col names: rs7093061 ... rs7899159

We also need to know where the SNPs are on the chromosome in order to avoid
having to search the entire chromosome for suitable predictors of a missing SNP:

> pos.miss <- snp.support$position[sel]

> pos.pres <- snp.support$position[-sel]

Calculating the imputation rules

The next step is to calculate a set of regression equations which provide rules for
imputing the missing SNPs from the present SNPs. This is carried out by the
function snp.imputation:

> rules <- snp.imputation(present, missing, pos.pres, pos.miss)

This took a short while. But the wait was really quite short when we consider
what the function has done. For each of the 14,251 SNPs in the “missing” set, the
function has performed a forward step-wise regression on the 50 nearest SNPs in the
“present” set, stopping each search either when the R2 for prediction exceeds 0.9 or
after including 4 SNPs in the regression. The figures 50, 0.9 and 4 in the previous
sentence are the default values of the function arguments try, r2.stop, and max.X.
Each element of rules contains a regression equation together with the R2 achieved:

> rules[1]

rs7909677 ~ rs2496276+rs4881551+rs4880750+rs9419498 (MAF = 0.0550505, R-squared = 0.6526863)

A summary table of all the 14,251 regression equations is generated by

> summary(rules)

SNPs used

R-squared 1 2 3 4

(0,0.1] 0 0 0 100

(0.1,0.2] 0 0 0 225

(0.2,0.3] 0 0 0 311

(0.3,0.4] 0 0 0 393

(0.4,0.5] 0 0 0 446

(0.5,0.6] 0 0 0 601

(0.6,0.7] 0 0 0 847

(0.7,0.8] 0 0 0 1243

(0.8,0.9] 0 0 0 2146

(0.9,0.95] 1495 543 427 317

(0.95,0.99] 2488 165 114 54

(0.99,1] 2237 50 26 20

2

Columns represent the number of SNPs in the regression and rows represent
grouping on R2. The first column (headed 0) represents SNPs which were monomor-
phic in the sample. The same information may be displayed graphically by

> plot(rules)

4 tag SNPs
3 tag SNPs
2 tag SNPs
1 tag SNPs

r2

N
um

be
r

of
 S

N
P

s

0
50

0
10

00
15

00
20

00
25

00

(0
.9

9,
1]

(0
.9

5,
0.

99
]

(0
.9

,0
.9

5]

(0
.8

,0
.9

]

(0
.7

,0
.8

]

(0
.6

,0
.7

]

(0
.5

,0
.6

]

(0
.4

,0
.5

]

(0
.3

,0
.4

]

(0
.2

,0
.3

]

(0
.1

,0
.2

]

(0
,0

.1
]

Carrying out the association tests

The association tests for imputed SNPs can be carried out using the function sin-

gle.snp.tests.

> imp <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = present, rules = rules)

Using the observed data in the matrix present and the set of imputation rules
stored in rules, the above command imputes each of the imputed SNPs, carries out
1- and 2-df single tests for association, returns the results in the object imp. To see
how successful imputation has been, we can carry out the same tests using the true
data in missing:

3

> obs <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = missing)

The next commands extract the p-values for the 1-df tests, using both the im-
puted and the true “missing” data, and plot one against the other (using the hexbin

plotting package for clarity):

> logP.imp <- -log10(p.value(imp, df = 1))

> logP.obs <- -log10(p.value(obs, df = 1))

> hb <- hexbin(logP.obs, logP.imp, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

0 1 2 3 4 5

0

1

2

3

4

5

6

logP.obs

lo
gP

.im
p

1
71

142
212
283
353
424
494
564
635
705
776
846
917
987
1058
1128

Counts

As might be expected, the agreement is rather better if we only compare the
results for SNPs that can be computed with high R2. The R2 value is extracted
from the rules object, using the function imputation.r2 and used to select a
subset of rules:

> use <- imputation.r2(rules) > 0.9

> hb <- hexbin(logP.obs[use], logP.imp[use], xbin = 50)

4

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

0 1 2 3 4 5

0

1

2

3

4

5

6

logP.obs[use]

lo
gP

.im
p[

us
e]

1
49
97

145
193
241
289
337
384
432
480
528
576
624
672
720
768

Counts

Similarly, the function imputation.maf can be used to extract the minor allele
frequencies of the imputed SNP from the rules object. Note that there is a tendency
for SNPs with a high minor allele frequency to be imputed rather more successfully:

> hb <- hexbin(imputation.maf(rules), imputation.r2(rules), xbin = 50)

> sp <- plot(hb)

5

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

imputation.maf(rules)

im
pu

ta
tio

n.
r2

(r
ul

es
)

1
4
8
12
15
18
22
26
29
32
36
40
43
46
50
54
57

Counts

The function snp.rhs.glm also allows testing imputed SNPs. In its simplest
form, it can be used to calculate essentially the same tests as carried out with sin-

gle.snp.tests1 (although, being a more flexible function, this will run somewhat
slower). The next commands recalculate the 1 df tests for the imputed SNPs us-
ing snp.rhs.tests, and plot the results against those obtained when values are
observed.

> imp2 <- snp.rhs.tests(cc ~ strata(stratum), family = "binomial",

+ data = subject.support, snp.data = present, rules = rules)

> logP.imp2 <- -log10(p.value(imp2))

> hb <- hexbin(logP.obs, logP.imp2, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

1There is a small discrepancy, of the order of (N − 1) : N

6

0 1 2 3 4 5

0

1

2

3

4

5

6

logP.obs

lo
gP

.im
p2

1
72

142
213
283
354
424
495
566
636
707
777
848
918
989
1059
1130

Counts

Meta-analysis

As stated at the beginning of this document, one of the main reasons that we need
imputation is to perform meta-analyses which bring together data from genome-wide
studies which use different platforms. The snpMatrix package includes a number of
tools to facilitate this. All the tests implemented in snpMatrix are “score” tests. In
the 1 df case we calculate a score defined by the first derivative of the log likelihood
function with respect to the association parameter of interest at the parameter
value corresponding to the null hypothesis of no association. Denote this by U . We
also calculate an estimate of its variance, also under the null hypothesis — V say.
Then U2/V provides the chi-squared test on 1 df. This procedure extends easily to
meta-analysis; given two independent studies of the same hypothesis, we simply add
together to two values of U and the two values of V , and then calculate U2/V as
before. These ideas also extend naturally to tests of several parameters (2 or more
df tests)

In snpMatrix, the statistical testing functions can be called with the option
score=TRUE, causing an extended object to be saved. The extended object con-

7

tains the U and V values, thus allowing later combination of the evidence from
different studies. We shall first see what sort of object we have calculated using
single.snp.tests without the score=TRUE argument.

> class(imp)

[1] "snp.tests.single"

attr(,"package")

[1] "snpMatrix"

> class(obs)

[1] "snp.tests.single"

attr(,"package")

[1] "snpMatrix"

We’ll now recalculate these objects, saving the score information

> obs <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = missing, score = TRUE)

> imp <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = present, rules = rules, score = TRUE)

> class(obs)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

> class(imp)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

You will see that extended objects have been returned. These extended objects
behave in the same way as the original objects, so that the same functions can be
used to extract chi-squared values, p-values etc., but several additional functions, or
methods, are now available. Chief amongst these is pool, which combines evidence
across independent studies as described at the beginning of this section. Although
obs and imp are not from independent studies, so that the resulting test would not
be valid, we can use them to demonstrate this:

> both <- pool(obs, imp)

> class(both)

[1] "snp.tests.single"

attr(,"package")

[1] "snpMatrix"

> both[1:5]

8

N N.r2 Chi.squared.1.df Chi.squared.2.df P.1df P.2df

rs7909677 1943 1612.010 0.12766846 0.1280266 0.72086181 0.9379925

rs12773042 1942 1579.626 0.04845484 0.5396816 0.82577411 0.7635010

rs11253563 1979 1901.302 3.07211895 3.6364413 0.07964560 0.1623143

rs4881552 1958 1876.450 1.17566466 1.3058297 0.27824036 0.5205263

rs10904596 1970 1883.313 3.39998067 3.4145323 0.06519718 0.1813609

Note that if we wished at some later stage to combine the results in both with a
further study, we would also need to specify score=TRUE in the call to pool:

> both <- pool(obs, imp, score = TRUE)

> class(both)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

Another reason to save the score statistics is that this allows us to investigate
the direction of findings. These can be extracted from the extended objects using
the function effect.sign. For example, this command tabulates the signs of the
associations in obs:

> table(effect.sign(obs))

-1 0 1

7085 3 7163

Reversal of sign can be the explanation of a puzzling phenomenon when two studies
give significant results individually, but no significant association when pooled. Al-
though it is not impossible that such results are genuine, a more usual explanation
is that the two alleles have been differently coded in the two studies: allele 1 in the
first study is allele 2 in the second study and vice versa. To allow for this snpMatrix
provides the switch.alleles function, which reverses the coding of specified SNPs.
It can be applied to snp.matrix objects but, because allele switches are often dis-
covered quite late on in the analysis and recoding the original data matrices could
have unforeseen consequences, the switch.alleles function can also be applied to
the extended test output objects. This modifies the saved scores as if the allele
coding had been switched in the original data. The use of this is demonstrated
below.

> effect.sign(obs)[1:6]

rs7909677 rs12773042 rs11253563 rs4881552 rs10904596 rs4880781

-1 -1 1 -1 -1 1

> sw.obs <- switch.alleles(obs, c("rs12773042", "rs10904596"))

> class(sw.obs)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

> effect.sign(sw.obs)[1:6]

rs7909677 rs12773042 rs11253563 rs4881552 rs10904596 rs4880781

-1 1 1 -1 1 1

9

