
OpenRISC 1000

Native Bus Interface Manual

18/Mar/2000, DRAFT

1

Copyright (C) 2000 OPENCORES.ORG and Authors

This document is free; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

1 About this Manual

1.1 Brief Introduction

OpenRISC 1000 native bus interface manual describes native OpenRISC 1000 bus
interface and its operation. It presents signals of OpenRISC 1000 architecture compliant
processors and how they perform bus transactions on native OpenRISC 1000 bus.

1.2 Authors

If you have contributed to this manual and your name isn't listed here, it is not meant as a
slight. We just don't know about it. Send email to the maintainer(s), and we'll correct the
situation.

NAME E-MAIL CONTRIBUTION
Damjan Lampret lampret@opencores.org Initial document
Jimmy C. Chen jimmy@ee.nctu.edu.tw NBI and timing updated

1.3 Revision History

REVISION DATE BY MODIFICATIONS
17/Mar/2000 Damjan Lampret Initial document
15/Jun/2000 Jimmy C. Chen NBI and timing updated

1.4 Work in Progress

This document is work in progress. Latest version is always available from
OPENCORES CVS. See details how to get it on http://www.opencores.org/.

We are currently looking for people working on this document and for a maintainer of
this document. If you would like to contribute send an email to one of the authors.

1.5 Fonts in this manual

In this manual, fonts are used as follows:
• Bold font is used for emphasis
• UPPER CASE items are signal names
• Square brackets [] indicate portion of a bus with a signal name or a number

representing a signal or with two numbers separated by a semicolon representing
a group of signal

2 OpenRISC 1000 Bus Interfaces

2.1 Introduction

OpenRISC 1000 architecture does not define any specific bus to be used in OpenRISC
1000 compliant processors. It allows any standard or proprietary bus interface including
native OpenRISC 1000 bus interface. Figure 2-1 shows how OpenRISC 1000 architecture
is bus independent.

OpenRISC 1000 Compliant Processor

OpenRISC 1000 Compliant Processor Core

PowerPC
60x BIU

AMBA BIU
(AHB)

MIPS BIU

Other Bus
Interface

Units

OR1K
Native BIU

(NBI)

At the moment only native bus interface is under development.

TODO:
 - add more about features required from a bus to be used in or1k system.
- call for developers to implement various BIUs for standard buses.

Figure 2-1. OpenRISC 1000 architecture is bus indepedent

2.2 Acronyms and Abbreviations

BIU Bus interface unit
CPU Central processing unit
EA Effective address
FPU Floating-point unit
PLL Phased-locked loop
R/W Read/Write
RISC Reduced instruction set computing
OR1K OpenRISC 1000

2.3 Conventions

0x Prefix indicates a hexadecimal number.
~SIGNAL Active low signal
SIGNAL[FIELD] Syntax used to identify specific signal of a bus or a group of

signals. FIELD can be a name of a one or a group of signals or a
decimal number or numerical range constructed from two values
separated by a colon.

x In certain contexts this indicates a don't care.
n In certain contexts this indicates an undefined numerical value.

2.4 Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x
indicates hexadecimal number. Decimal numbers don't have any special prefix. Binary
and other numbers are marked with their base.

3 OpenRISC 1000 Native Bus

Interface

3.1 Introduction

Native bus interface is simple and easy to understand. It is synchronous, operates with
clock CLK and supports burst transfers. It has a variable width data port and variable
physical address space support. In addition, there are several handshake signals and
variable number of interrupt inputs. The interface has a simple timing specification and is
capable of transferring data between the processor and memory at a peak rate of
320MB/sec with a 100MHz bus and 32-bit data port.

The native bus interface can transfer DATA_WIDTH2 data in one cycle. However, the rate
at which data is transferred to/from the bus master is determined by the data transfer
capability of the slave device. The slave device can exchange data with the bus master at
any transfer rate.

TODO: Define correct terminology (processor vs bus master vs master agent; external device vs slave
device vs external agent etc??) since OR1K native bus interface manual can be broader than just native
BIU spec. Instead could define entire OR1K systems.

3.2 Specifications

We expect the following from native OpenRISC 1000 bus interface:

• Simple bus interface that allows simple bus interface implementations with low

number of gates

• Easily understandable bus protocol that would speed up development of peripherals

for OpenRISC 1000 processors

• Similar bus protocol to other standard buses that would allow easy migration once

other standard bus interfaces become available (MIPS bus, PowerPC 60x bus, AMBA

High Speed Bus)

• Small number of interface signals

2 Set by the user at BIU synthesis time in configuration file.

3.3 Signal Descriptions

The processor outputs start to change at the rising edge of CLK. The processor input is
latched at the rising edge of CLK.

Figure 3-1 illustrates signals of native bus interface of OpenRISC 1000 compatible
processor.

OpenRISC 1000
Compliant Processor

with Native
OpenRISC 1000 bus

interface

ADDR
[PADDR_WIDTH-1:0]

DATA
[DATA_WIDTH-1:0]

~IRQN [IRQS-1:0]

BE [2 P̂ORT_WIDTH-1:0]

~BURST

~RST

CLK

~BR

~BG

R/~W

~VALID

~BUSY

~CS [CSS-1:0]

TODO: Signals need more precise definition, timing notes, state meaning etc.

3.3.1 Arbitration Signals

~BR is driven by the processor when it requests mastership of the bus. It may be driven
for one or more clock cycles until ~BG is asserted by external bus arbitration logic.
Arbitration logic can also be implemented in the processor (implementation specific).

Figure 3-1. OpenRISC 1000 native bus signals

~BG is driven by external bus arbiter and indicates to the processor that can assume
mastership of the bus. If there is only one master in the system then its ~BG can be tied to
ground.

3.3.2 Address Transfer Signals

ADDR bus transfer signals are used to transmit physical address of the data to be
transferred. They are bi-directional signal. On burst transfers, the address bus presents
word aligned address containing the critical address first. Address during burst operations
is incremented by the master.

Width of address bus is set by the user at synthesis time with PADDR_WIDTH.

3.3.3 Data Transfer Signals

DATA bus transfer signals are used to transmit data. They are bi-directional signal.

Width of data bus is set by the user at synthesis time with DATA_WIDTH.

3.3.4 Transfer Attribute Signals
BEn signals are driven by the bus master to indicate to the slave device which data bus
byte lines contain valid data. Number of byte enable signals is set by the user at synthesis
time with PORT_WIDTH.

R/~W is driven by the bus master to indicate to the slave device direction of the
transaction.

~BURST is driven by the bus master to indicate to the slave device burst type of
transaction. Usually burst transactions are used to flush and refill cache lines. Burst
transaction are similar to single-beat transaction except that they last longer.

3.3.5 Transaction Handshake Signals

~BUSY is used by an slave device to indicate to the bus master whether it can accept a
new read or write transaction. Processor samples this signal before deasserting the
address on read and write transactions.

~VALID is driven by the bus master to indicate to the slave device that there is a valid
address on ADDR bus (and data on DATA bus in case of a write transaction).

3.3.6 Chip Select Signals (optional)

~CSn are driven by the processor to select slave device that is the target of the current
transaction. Target device can responds to initiated transaction with delivery of data in
case of read transaction or with acceptance of data in case of write transaction. If target
device is not ready to process transaction it must assert ~BUSY signal.

When processor is not a bus master it monitors valid transactions on the bus and
generates chip select signals for other masters.

Number of chip select signals is set by the user.

3.3.7 Interrupt Signals

~IRQn are asserted active by peripheral devices to request processor’s intervention. If
interrupt request is not masked an external interrupt exception is taken. Interrupt request
is deasserted by the processor with peripheral specific action. Usually this means a write
in one of the peripheral’s interrupt control registers.

Interrupt request signals are processed with software interrupt priority scheduling. By
default the highest priority has ~IRQ0 followed by ~IRQ1 etc. There is no special non-
maskable interrupt request signal since NMI can be implemented with ~IRQ0 and never
masking its operation.

Number of interrupt request signals is set by the user.

3.3.8 Clock Signals

OpenRISC 1000 native bus interface uses a single clock input CLK. It sets the frequency
of operation for the bus interface. Internally processor uses a PLL circuit to generate
master clock for all of the CPU circuitry. Internal clock can be a multiple of CLK
frequency allowing the CPU to operate at an equal or greater clock than the bus interface.

3.3.9 Reset Signals

OpenRISC 1000 native bus interface uses a single reset input ~RST. When ~RST signal
is asynchronously asserted active, all the internal states are initialized to default values
(most of them are zero) and reset exception is taken after deassertation.

There is no soft reset signal.

3.4 BIU Registers

TODO: Should we have any config registers in BIU? If not how one can set address
ranges for chip selects (at synthesis time?)? How about masking IRQs?

TBD

3.5 Timing Diagram
The native bus interface(NBI) is used in original OR1K chip design. Bus transaction is
initiated by REQN. Read or write transaction is indicated by NBI_RW. If NBI_RW is 1,
then it is a read transaction; if it is 0, then it is a write one. NBI_GNTN is a grant signal
issued by external bridge or arbiter. NBI_BURSTN is the burst indicator. If
NBI_BURSTN is zero, one cache line burst access will be initiated. The timing diagram
is shown in 3.5.1, 3.5.2.

3.5.1 Single Read/Write Transaction

NBI_BURSTN

NBI_REQN

NBI_GNTN

NBI_RW

NBI_DI/DO

Single word transfer

read write read write

command
cycle

command
cycle

command
cycle

command
cycle

3.5.2 Burst Read/Write Transaction

NBI_BURSTN

NBI_REQN

NBI_GNTN

NBI_RW

NBI_DI/DO

Burst transfer(one cache line)

read write

3.5.3 Interrupt Request
Interrupt request signal is low active. It must remain active until interrupt service routine
deactivates the device which issuing the interrupt request.

INTREQN

