OpenRISC 1000

System Architecture Manual

22/Apr/2001, PRELIMINARY

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Copyright (C) 2000, 2001 OPENCORES.ORG and Authors

This document is free; you can redistribute it and/or modify it under the terms of the
GNU Genera Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Genera Public License for
more details.

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 20of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

1 Tableof Contents

L TABLE OF CONTENTS ...ttt sttt st st 3
2TABLE OF FIGURE ..ottt st 7
STABLE OF TABLES.... .ottt sttt sre e enes 8
4 ABOUT THISMANUAL ...ttt s 10
4.1 BRIEF INTRODUCTIONuviutetistesteasessesseesenseessessessessessessessessessessssssessessessessessessensennes 10
A2 AUTHORS ...utittstesteete et et e sttt b e sbesbe st se et et et e s b e e b e s b e e b e e st e s e e e e b et e see st e nbeenenneeneenes 10
4.3 REVISION HISTORY ...cuiiuiiiiiisiesiestesiesteeseeseeee e stessestesse s eseeseesaessessessessessessessessennes 11
4.4 WWORK IN PROGRESS........cetitirtestestesiesiesieeseessessessessessessessessesssessessessessessessessessessesnes 11
4.5 FONTSIN THISMANUAL ..couveiitestestestessesseeseeseessessessessessessessessessssssessessessessessessessennes 11
5ARCHITECTURE OVERVIEW ..o 12
DL FEATURES ...t tttettetteseete e stestestestesseeseeseeseeeessestessesbesseaseeseeneeneensentessenbessessessennennenneen 12
5.2 INTRODUCTION ..uututeueesiestestestessesiessessesssessessessessessessessessessssnsensessessessessessessessesennes 13
5.3 ACRONYMSAND ABBREVIATIONS.....ccuteuteeeruesteseessessessensessesssessessessessessessessessessensees 13
5.4 CONVENTIONS....cuteuteutetestestestessesie s ssee e e e e ssesbesbesbesaesbesseeseess e s e stesbesbesaesbesaesneeneeneen 14
5.5 NUMBERING....ccutettetietesiesiestestestesseeseeseeseessessessessessessesseesesseensensessessessessessessessessennen 15

6 ADDRESSING MODES AND OPERAND CONVENTIONS........cccoovininireenen. 16
6.1 MEMORY ADDRESSING IMODES......cccititieiieieieniesieseessessessesseeeessessessessessessessessenses 16
6.1.1 Register Indirect with Displacement...........ccocveeieeieviee s 16
6.1.2 Register Indirect with Displacement and Update...........ccccevvrieneeinnennennenne 17
6.1.3 PC REIGLIVE ..ot 17

6.2 MEMORY OPERAND CONVENTIONSceitiitieuieneeeeseessessessessessesseessessessessessessessessenes 18
6.2.1 Bit and Byt€ Ordering.......cccocveeeeiereeieseesieeeeseeseeseeseesseessesseessesssessesssessseens 19
6.2.2 Alignment and MisaligNed ACCESSES........coierrierirreeiie e siee e ee e e 20
TREGISTER SET ..ottt sttt s sbe et 21
T L FEATURES ...coutiittite sttt ettt e et e et st be et se e e e e ntesaesbesseebe e st eneentesenbesaesbenreanenneenean 21
7.2 OVERVIEW ..ttt sttt ettt st be sttt s et s bbbt be e st et et e b et e naesbenbeenenneeneas 21
7.3 SPECIAL-PURPOSE REGISTERSccutitiittstieseeseeeeseessessessessessesseeseessessessessessessessessenses 21
7.4 GENERAL-PURPOSE REGISTERS (GPRS)covtieiiiiesieeiteeiesieesieeie e ste e snee e 25
7.5 SPECIAL SIXTEEN GPRS SUPPORTccviitiiiietieiesiesiesiestessessesseeseessessessessessessessessensens 25
7.6 VECTOR/FLOATING-POINT REGISTERS (VFRS)....ccviiieiecie e 26
7.6.1 Condition Code Register (CCRO-CCRID)ccceereriierienieeiesee e 26

7.7 SUPERVISION REGISTER (SR) ..c.veeiiiiiitieiieciesieesiesse e steeeesreesse e sseesseeaesneesseenneens 27
7.8 EXCEPTION PROGRAM COUNTER REGISTERS (EPCRO - EPCR15)ccccevveiieniee. 28
7.9 EXCEPTION EFFECTIVE ADDRESS REGISTERS (EEARO-EEARILD)ocvciivieiiiee, 29
7.10 EXCEPTION SUPERVISION REGISTERS (ESRO-ESRI1S) ..o 29
BINSTRUCTION SET ...ttt st sb s 31
B.L FEATURES ...t ittetieteettetesiestestestestesieese et et e tesaestessesbesaeaseeseeseeneensetessesbesaeasessennenneeneen 31

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 3of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

B2 OVERVIEW ..ttt sttt sttt bbbt st b sttt et et b nb e b b ne e e e 32
B.3 ORBIS32/BA.......ceeeieeeiese ettt sttt sttt ettt nae e beene e neeneen 32
O EXCEPTION MODEL ..ottt sttt s 271
O.1 INTRODUCTION ..euvteuteuieeessessessessessessesseeseessessessessessessessessesseessessessessessessessessessenneens 271
0.2 EXCEPTION CLASSES......ciitiitisiestesiessesseeseessessestessessessessessessessesssssessessessessessessesneens 271
9.3 EXCEPTION PROCESSING....cueittitisteesieseeiesiessestessessessessessesseessessessessessessessessessensenns 273
9.4 FAST CONTEXT SWITCHING (OPTIONAL) c.vveveeuteseeesseeseeeseesseessesseesseessesssessesssesssssnes 273
9.4.1 Changing Context in SUPErviSOr MOGE...........ccoverereenienie e 274
9.4.2 Context Switch Caused by EXCEPLION.........cccoveeveeeceeeee e 274
9.4.3 Accessing Other Context REGISLEN'S.......coovrriieieeeneere e 275
9.4.4 System Calls and Parameter Passing.........cccocveveeeneeneece s eee e 275
10 MEMORY MODEL ...oooiiiiieiese et 276
1O.1 MEMORY ..tetitirtestieieeseesee st st st st sbe sttt b s bbbt bt st et e b et e st et e nb e bt nne e e s 276
10.2 MEMORY ACCESS ORDERING.ccuteuieueeieieseessessessesseasessesseesssssessessessessessessessennes 276
10.2.1 Memory Synchronize INSErUCLION.........cceceerieeieriesesee e ee e 276
10.2.2 Pages Designated as Weakly-Ordered-Memory..........coccoveeeenieeneeiieseennns 277
LO.3 ATOMICITY ettirteruerueeueeeeseesteseesbesse s st st e e e e e sbesbesaesbesbeebesse e st et et e benbe et e nbeenenseeneenes 277
11 MEMORY MANAGEMENT ...oootiiiiceeeese sttt s 278
111 MMU FEATUREScoutiiiieste sttt sttt sttt st st bbbt sttt sne e enes 278
11.2 MMU OVERVIEW ...veouierieiesteseestessesseeseeeessessessessessessessessessessssssessessessessessessessennes 278
11.3 MMU EXCEPTIONS.....cettitistertestestessesseseeseessessessessessessessessesssssessessessessessessesssenes 280
11.4 MMU SPECIAL-PURPOSE REGISTERSccoueriiiieiiistesiessesesseeseessesiessessessessessessennes 280
11.4.1 Data MMU Control Register (DMMUCR)cccoovmiiiieneeieseene e seeneens 281
11.4.2 Data MMU Protection Register (DMMUPR)........ccoooiiiiiiniiieereeieneene 282
11.4.3 Instruction MMU Control Register (IMMUCR)cccccceviveiievieeneeieseeens 283
11.4.4 Instruction MMU Protection Register (IMMUPR).........cccoeiiiniineninneenens 283
11.4.5 Instruction/Data TLB Entry Invalidate Registers (XTLBEIR)...................... 284
11.4.6 Instruction/Data Translation Lookaside Buffer Match Registers (XTLBMRO-
XTLBIMIRZ55)c ettt sttt sttt 284
11.4.7 Instruction/Data Translation Lookaside Buffer Translate Registers
(XTLBTRO-XTLBTR255)ciiiiiieriesiesie sttt 285
11.5 ADDRESS TRANSLATION MECHANISM IN 32-BIT IMPLEMENTATIONS.....c.ccccveuenne. 286
11.6 ADDRESS TRANSLATION MECHANISM IN 64-BIT IMPLEMENTATIONS.....c.ccecueuene. 290
11.7 MEMORY PROTECTION MECHANISMcouveuieieiesiestesiessesseeeeseesseseessessessessessesseenes 293
11.8 PAGE TABLE ENTRY DEFINITION ...oiuiiiiiiiieiesie et 294
11.9 PAGE TABLE SEARCH OPERATION ...vccuteuieuieieseeseessessessesseseessessessessessessessessessennes 296
11.10 PAGE HISTORY RECORDINGcoutruirueeueeiesiestesiestessessesseseeseessessessessessessessesnsenes 296
11,10 PAGE TABLE UPDATES.....ciiitistisieetieieeiesieseesteseestessessessesseessessessessessessessensessennes 297
12 CACHE MODEL AND CACHE COHERENCYccciiiiierienenie s 298
12.1 CACHE SPECIAL-PURPOSE REGISTERScvertiiteriestesiessesseseeseessessessessessessessesseenes 298
12.1.1 Data Cache Control REQISEN.........ccveeeereereeie e e see e ee e 299
12.1.2 Instruction Cache Control REGISLEScoverereereneree e 299
12.2 CACHE MANAGEMENT ..ottt sttt sttt ettt et b e et sttt st sse s ene s 300

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 4 0of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

12.2.1 Data Cache Block Prefetch (optional).........cccoceveevieeceneenecce e 300
12.2.2 Data Cache BIOCK FIUSN........c.cooiiiiieeeee e 300
12.2.3 Data Cache Block Invalidate.............cccveeereeieieenese e 301
12.2.4 Data Cache Block Write-BacK...........cccoreeiiriiiienieieeeee e 302
12.2.5 Data Cache Block LOCK (Optional).......c.ccceereeiereerenieseeseeesee e eee e 302
12.2.6 Instruction Cache Block Prefetch (optional)ccecvveeneninniennenieseeene 303
12.2.7 Instruction Cache Block Invalidate.............cccoeveenieeieneene e 303
12.2.8 Instruction Cache Block Lock (Optional).........ccoceevereereenenieneeneeeeseeiens 304

12.3 CACHE/MEMORY COHERENCY....ccutiuiriieuieiesiesiesiessessessesseseessessessessessessessessesseenes 304
12.3.1 Pages Designated as Cache Coherent Pages.........ccoccvveererinneenesiinseenens 305
12.3.2 Pages Designated as Caching-Inhibited Pages...........c.cccooveeievieeneccieneennen. 305
12.3.3 Pages Designated as Write-Back Cache Pages...........ccccevvevereeneeiieneennnns 305

I3 DEBUG UNIT ittt sttt bbb 307
131 FEATURES ...tetiiteeteeteesee e stestestestesteaseeseeseessessestesaesbesseeseeseeseeneensestessestessessensenneenes 307
13.2 DEBUG VALUE REGISTERS (DVRO-DVRY)veeieeeeseee et 308
13.3 DEBUG CONTROL REGISTERS (DCRO-DCRY7)vviiiiieeiinieniee e 308
13.4 DEBUG MODE REGISTER 1 (DMRL)c.oeiiiiietiee et 309
13.5 DEBUG MODE REGISTER 2(DMR2)ooiiiiiiieieeeseeee e 311
13.6 DEBUG WATCHPOINT COUNTER REGISTER (DWCRO-DWCRL)cccocvevveieniens 312
13.7 DEBUG STOP REGISTER (DSR) ...ccuviiiiiieeiiiie et s 313
13.8 DEBUG REASON REGISTER (DRR)coviiiiiiesiecieseeseeesie e sie e s sae e nneas 314
13.9 DEBUG INSTRUCTION REGISTER (DIR)coiiiiiiiieniesieeeee e 316
14 PERFORMANCE COUNTERS UNIT ..o 317
LA L FEATURES .. ttttsteeteeteeseeseestestestestesseaseeseeseessessessessessesseasesseeseensensessessentessessensesnennes 317
14.2 PERFORMANCE COUNTERS COUNT REGISTERS (PCCRO-PCCRY)cccvvrieennne. 317
14.3 PERFORMANCE COUNTERS MODE REGISTERS (PCMRO-PCMRY).......ccocvreeneee. 318
15 POWER MANAGEMENT ..ottt st 320
15,1 FEATURES ...ttittiteeteeteeseeeestestestestesseasesseeseeseessessessesbesseasesseeseensensessessessessessessennennes 320
15.2 POWER MANAGEMENT REGISTER (PMR)ooitiiieiiiseee e 321
16 PROGRAMMABLE INTERRUPT CONTROLLER.....ccooiiiiirecececeeeeee 322
16. 1 FEATURESetitisteeteette e sie st st sttt se st ne et bbbt bt e st et e et et e st et e st e e benneeneenes 322
16.2 PIC MASK REGISTER (PICMR) ..ot 323
16.3 PIC PRIORITY REGISTER (PICPR)coitieieiiesecie e seesie et sae e nne s 323
16.4 PIC STATUS REGISTER (PICSR)coiiiiiieieiieniee et 324
17 TICK TIMER FACILITY ittt s 325
I Ny LU PR 325
17.2 TICK TIMER CONTROL REGISTER (TTCR)cevuieieiiesiieieeee e sie e e e eee e e 326
17.3 TICK TIMER INCREMENTING REGISTER (TTIR) ...viiiiiiieieseesee e 326
18 OPENRISC 1000 IMPLEMENTATIONS......ooi e 328
18. 1 OVERVIEW ..eeviiiitieiieieetesiestestestestessesseeseeseessessessessesseasessesseensensessessessessessessensennes 328
18.2 VERSION REGISTER (VR)veitieiiciesie st esieeee e siesae st sse e e sae e sneenneeaesneennens 328

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 5o0f 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

18.3 UNIT PRESENT REGISTER (UPR) ..ottt 328
19 APPLICATION BINARY INTERFACEo it 331
19.1 DATA REPRESENTATION ...cotititistessesseeeeeessesseseessessessessessessssssessessessessessessessennes 331
19.1.1 FuNdamental TYPES......cccuereerierierieesie et ae e e nee s 331
19.1.2 AggregateS and UNIONS..........ccccueveereeeeseerieeieseesseseeseessesaesseesseesesseessens 332
SR 1 1= Lo SRS 333
19.2 FUNCTION CALLING SEQUENCEecutruteuieuieiesteseestesiessessesesseessessessessessessessesneenes 334
19.2.1 REQISLEr USAQE......ccueeueeeirieeiieseesieesie s e stee st e s e e e e sbesnaesreeseeeneesseeseens 334
19.2.2 The SACK Framecooiiie et 336
19.2.3 Parameter PaSSING.........ccoreerierierieesieeie et s ee e ste e s saeseesseeseens 337
19.2.4 Functions Returning Scalars or NO ValUe..........cccccvevvveereeieseeseecie e 337
19.2.5 Functions Returning SIructures or UNIONS..........ccocveeereenennieseesiesieeseeneens 337
19.3 OPERATING SYSTEM INTERFACE....c..citiieieieriesiestesiessesseseeseesseseessessessessessesneenes 337
19.4 POSITION-INDEPENDENT CODEveeuveuieueeeeseesieseessessessessesesssessessessessessessessessennes 337
FOL ELF e bbb e 338
19.5.1 Header CONVENTIONccoiieiieiesieesieeee sttt e e nee s 338
19.5.2 SECHIONS....cvitiriieiieeeie ettt sttt bbb b 338
19.5.3 REIOCALTION.....coiiiieiiieieeee ettt ae et nre s 338
1O.6 CORF ...ttt bbb bbbttt et e bt e b e b bt ae e s 339
19.6.1 SECLIONS.....ceiueeieeiee ettt sttt st ee et e sae e beeneesreeseeentesneenreas 339
19.6.2 REIOCALION......couiiiiiiieieieste ettt bbb 339

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 6 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

2 Table Of Figure

Figure 4-1. Authors of ThISManUualccccouveieiieiecie e 10
Figure 4-2. ReVISION HISIOMYoiiiiiiiiiie ettt e 11
Figure 6-1. Register Indirect with Displacement AddreSsing.........ccceeeveveereeieeseenesennnns 16
Figure 6-2. Register Indirect with Displacement and Update...........cccccoveeiininniennnenne. 17
Figure 6-3. PC Relalive AdAreSSINGcceeveeueiieieee e este et 18
Figure 11-1. Trandlation of Effective to Physical Address— Simplified block diagram for
32-bit processor IMpIEMENLaLioNScccceceeeereee e 279
Figure 11-2. Memory Divided INtO L1 and L2 PagES.......ccoeeervererrieerieneeneesee e 287
Figure 11-3. Address Trandation Mechanism using Two-Level Page Table................. 288
Figure 11-4. Address Translation Mechanism using only L1 Page Table...................... 289
Figure 11-5. Memory Divided Into LO, L1 and L2 Pages.......ccceeeeveereeieeseesieseeseeenenns 290
Figure 11-6. Address Translation Mechanism using Three-Level Page Table............... 291
Figure 11-7. Address Trandation Mechanism using Two-Level Page Table................. 292
Figure 11-8. Selection of Page Protection Attributes for Data ACCESSES........cccceerveenee. 294
Figure 11-9. Selection of Page Protection Attributes for Instruction Fetch Accesses.... 294
Figure 11-10. Page Table ENtry FOIMEL...........ccoooieevieninienieres e 295
Figure 13-1. Block Diagram of Debug SUPPOIt.........cccceeiuereereeiereesie e see e 308
Figure 16-1. Programmable Interrupt Controller Block Diagram............cccceeevecieieenene. 322
Figure 17-1. Tick Timer BIOCK Diagram.........ccccvecueieereeiesiese e seesie e e e snessseene e 325
Figure 19-1. Byte aligned, SIZEOF IS Lccccciieeiiiii e e 332
Figure 19-2. No padding, SIZEOF IS8......ccveieiieiece et 332
Figure 19-3. Padding, SIZEOf IS 18......cc.coiiiiiiieieee et 333
Figure 19-4. Storage UNit SNaNG.......cccceieeieeierieeieseeseeeeseese e sreesaeeeeseessesseesseeseens 334

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 7 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

3 Table Of Tables

Table 5-1. Acronyms and AbDrevialions...........ccocveereeieice s 14
Tahle 5-2. CONVENLIONScoiiiieieeie ettt et sre e e e e e e sneenne s 15
Table 6-1. MemOry OPErandS.........cccceieererieieeresieseeseseeseesse e seesaeeseesseessessesseessens 18
Table 6-2. Default Bit and Byte Ordering in HaAlfwords...........ccoooiieiiiinnieneneneens 19

Table 6-3. Default Bit and Byte Ordering in Singlewords and Single Precision Floats... 19
Table 6-4. Default Bit and Byte Ordering in Doublewords, Double Precision Floats and

o LIV o (o g 1Y/ o= TS 19
Table 6-5. Memory Operand AlIGNMENE..........cooeiiriineeie e 20
Table 7-1. GroupS Of SPRScoiicicieceee ettt enae s 23
Table 7-2. List of All Specia-Purpose REQISIENS........ccceiiririieieeiesee e 25
Table 7-3. Lower and Upper Parts of General-Purpose RegiSters........ccovvvvvveveeieseenens 25
Table 7-4. Floating-PoiNt REGISLEIS......cciiiiiieieeeee e 26
Table 7-5. CCR Field DESCIIPLIONS.ccveieieeiiesieeiesieesie e see e sree e ae e e e snesneeneens 27
Table 7-6. SR FIeld DESCITPLIONS.cceeiteeieeiesiee ettt s see e nee s 28
Table 7-7. EPCR Field DESCIIPLIONS........ccoiiierieeieeiesteesie s st ee et eae e eaesnee e 28
Table 7-8. EEAR FIeld DESCIPLONScoiiiierieeiieeie et 29
Table 7-9. ESR Field DESCIIPLIONScccveieiiesieesieeeesteesie e s ee e s eae e sse e sneeneens 30
Table 8-1. OpenRISC 1000 INStruCtion ClaSSES........coieeiierieiierieeee e 32
Table 9-1. EXCEPLION ClassesS......cviieiieieiiesieie et ee e ste e e e nne e nns 272
Table 9-2. Exception Types and causing CONAItIONS.........ccoveveereereriinneenenee e 272
Table 11-1. MMU EXCEPLIONScoceeiteeieiiesieeieseesieseeseesseeeesseesseeaesseessesnsnsseessesnsnsees 280
Table 11-2. List of MMU Special-Purpose REQISLENS.......coovriirierieeie e 281
Table 11-3. DMMUCR Field DESCIPLIONSccccevveeieieeieeieseesie e eee e 281
Table 11-4. DMMUPR Field DeSCriptioNS........cccoeriereerienieneesiee e 283
Table 11-5. IMMUCR Field DESCIiPtiONS.......cccveieeiieieerie e seesie e seese e ees 283
Table 11-6. IMMUPR Field DESCIiptioNSccceeiiriieieerieeeesee e 284
Table11-7. XTLBEIR Field DESCriptioNnscccccieeieeieese e seese e eee e 284
Table11-8. XTLBMR Field DEeSCriptiONS........ccceieriirieerieeeeseesiee e 285
Table11-9. XTLBTR Field DESCIiPLIONScccveeeeeieeie et et see e 286
Table 11-10. Protection AttrDULES.c.ooeoiieeeeee s 293
Table11-11. PTE Field DeSCIiPliONS......cciveiieeeseeieceese e see e eee e see e ssee e e sns 295
Table 12-1. CaChe REQISIENScocuiiieiieeie ettt ettt es 299
Table 12-2. DCCR Field DESCIipliONS......ccvecvieeeseeieseesieceesee e eeesreesee e see e e sns 299
Table12-3. ICCR Field DESCIIPLIONScoiieiiiieeieeie et 299
Table 12-4. DCBPR Field DESCriptiONS.......ccccveeeieeiereesieeieeseesie e seesae e seesse e ens 300
Table 12-5. DCBFR Field DeSCriptioNS.cccciieeieriiereerieeeesee e 301
Table 12-6. DCBIR Field DESCIiPLIONS......ccccveeerieeie et ceesee e see e e sse e ens 302
Table12-7. DCBWR Field DESCriPtioNSc.coeeieriereerieeeeseesiee e 302
Table 12-8. DCBLR Field DESCIiPLIONS.......cccvieeerieeieceesieeeeseesie e seee e eee e see e sns 303
Table 12-9. ICBPR Field DESCriPtiONS......cccoiieerierie et 303
Table 12-10. ICBIR Field DeSCriptionS.......ccccveveieeie e e e se e 304
Table12-11. ICBLR Field DESCIIPIONS......cocuiieeieeie et s 304
Table 13-1. DVR Field DESCriptioNnS.......cccceeiieeeseeieceesieceeseesie e sree e see e sse e sns 308

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 8 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Table 13-2. DCR Field DESCriPtiONS.......ccciiieiiieeerieeieceeseeeesees e eee e see e ssee e ens 309
Table 13-3. DMRL Field DESCIPLIONScooueiiirieeieeie et 311
Table 13-4. DMR2 Field DeSCIipliONSccvecveieesieeieceese e see e see e esen e ens 312
Table 13-5. DWCR Field DESCriptionsS........cocvieeiieriiereesieeeeseesiee e 313
Table 13-6. DSR Field DESCriPLiONS......cccueieeiiieeeriecieseesieeseeseesie e sae e ssee e sns 314
Table13-7. DRR Field DESCriPtioNS.......ccoiceriiiierieeie et 316
Table 13-8. DIR Field DESCIIPLIONS ...c.cevueeieeieeecsie et eee et sae e 316
Table 14-1. PCCRO Field DESCriPLioNSccceieerierie et 318
Table 14-2. PCMR Field DESCriptioNS......ccccecveeeieeeeseesieeieseesie e see e see e sse e sns 319
Table15-1. PMR Field DESCIIPLIONScccoviiiiieenieeie e 321
Table16-1. PICMR Field DESCriptionS.......ccccveeeieeieieesie e e eee e eee e 323
Table 16-2. PICPR Field DESCIipliONSccceeiiiierieeie et 323
Table 16-3. PICSR Field DESCriptioNnS......c.ccccveeeieee e eee e eee e sae e esee e ees 324
Table17-1. TTCR Field DESCIiPtIONSccceeiiieiiieeie et 326
Table17-2. TTIR Field DeSCIiPliONS.ccciiveiiieeeiecieceeseeee e e see e e e e ens 327
Table18-1. VR Field DESCIIPLIONS.....ccciieieiiiiiesieeie et 328
Table 18-2. UPR Field DEeSCIiPLiONSccccciieiesiesieeieseesie e see st sae e ens 330
TaDIE 19-1. SCAlAr TYPES ..oueiieieiieie ettt ettt st be et e nes 331
TaDIE 19-2. VECION TYPES .. ueiiieeieeeesteeiesee st see e e steeae e e sseeae e teeaesreesseeneesneenseennennes 332
Table 19-3. Bit-Field Typesand RaNQESccooeeiirieiieneeesiesee e s 333
Table 19-4. General-PurpoSe REGISLEIScciveiiieeiece et 335
Table 19-5. Vector/Floating-Point REGISIEIScoiireieeneeeeeeee s 336
Table 19-6. SLACK FTAIMEcoueiiiieiect et 337
Table 19-7. e ident FIeld ValUES........cooo i 338

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 9of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

4 About thisManual

4.1 Brief Introduction

OpenRISC 1000 system architecture manual defines architecture for a family of open
source, synthesizable RISC microprocessor cores. As architecture, OpenRISC 1000 allows

for a spectrum of chip and ystem implementations at a variety of price/performance points for a
range of applications. It is a 32/64-bit load and store RISC architecture designed with

emphasis on performance, smplicity, low power requirements and scalability. OpenRISC
1000 architecture targets medium and high performance networking and embedded
computer environments.

Architecture itself covers instruction set, register set, cache management and coherency,
memory model, exception model, addressing modes, operands conventions and
application binary interface (ABI).

This manual does not specify implementation specific details such as pipeline depth,
cache organization, branch prediction, instruction timing, bus interface etc.

4.2 Authors

If you have contributed to this manual and your name isn't listed here, it is not meant as a
dight. We just don't know about it. Send email to the maintainer(s), and we'll correct the
Stuation.

NAME E-MAIL CONTRIBUTION
Damjan Lampret lampret@opencores.org Initial document
Chen-Min Chen jimmy @ee.nctu.edu.tw Appended some notes
Marko Mlinar markom@aopencores.org Fast context switches
Johan Rydberg jrydberg@opencores.org ELF section
Matan Ziv-Av matan@svgalib.org Severa suggestions

Figure4-1. Authorsof ThisManual

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 10 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

4.3 Revision History

Revision history of this manual.

REVISION DATE BY MODIFICATIONS

15/Mar/2000 Damjan Lampret Initial document

7/Apr/2001 Damjan Lampret First public release

22/Apr/2001 Damjan Lampret Incorporate changes from Johan and
Matan

Figure4-2. Revision History

4.4 Work in Progress

This document is work in progress. Anything in the manua can change until we will
make our first silicon. Latest version is always available from OPENCORES CVS. See
details how to get it on http://www.opencores.org/.

We are currently looking for people working on this document and for a maintainer of
this document. If you would like to contribute send an email to one of the authors.

4.5 Fontsin thismanual

In this manual, fonts are used as follows:

Typew it er fontisused for programming examples

Bold font is used for emphasis

UPPER CASE items may be either acronyms or register mode fields that can be
written by software. Some common acronyms appear in the glossary in this
chapter

Square brackets [] indicate an addressed field in a register or a numbered register
in aregister file

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 11 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

5 Architecture Overview

This chapter introduces OpenRISC 1000 architecture and describes genera architecture
features.

5.1 Features

OpenRISC 1000 architecture includes the following principal features:

A completely open and free architecture

A linear, 32-bit or 64-hit logical address space with implementation specific physical

address space

Simple and uniformlength instruction formats featuring different instruction set

extensions:

= OpenRISC Basic Instruction Set (ORBIS32/64) with 32 bits wide instructions
aligned on 32-bit boundaries in memory and operating on 32 bits and 64 bits data

= OpenRISC Vector/DSP eXtenson (ORVDX64) with 32 bits wide instructions
aligned on 32-bit boundaries in memory and operating on 8, 16, 32 and 64 bits
data

= OpenRISC Floating-Point eXtenson (ORFPX32/64) with 32 bits wide
instructions aligned on 32-bit boundaries in memory and operating on 32 bits and
64 bits data

Two simple memory addressing modes where memory address is cal culated with:
Addition of register operand and signed 16-bit immediate
Addition of register operand and signed 16-bit immediate followed by update of
register operand with calculated effective address

Most instructions operate on two register operands (or one register and a constant),

and place the result in athird register

Shadowed or single 32-entry or narrow 16-entry general purpose register file

Branch delay dot for keeping pipeline as full as possible

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 12 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Support for separate instruction and data cachesMMUs (Harvard architecture) or for
unified instruction and data cachessMMUs (Stanford architecture)

A flexible architecture definition that allows certain functions to be performed in
either hardware or with assistance of implementation-specific software

Low and high priority external exceptions (interrupts)

Fast context switch support in register set, caches and MMUs

5.2 Introduction

OpenRISC 1000 architecture is completely open architecture. It defines architecture of a
family of open source, RISC microprocessor cores. As architecture, OpenRISC 1000 allows
for a spectrum of chip and system implementations at a variety of price/performance points for a
range of applications. It is a 32/64-bit load and store RISC architecture designed with
emphasis on performance, simplicity, low power requirements and scalability. OpenRISC
1000 targets medium and high performance networking and embedded computer
environments.

Performance features include fully 32/64-hit architecture, vector, DSP and floating-point
instructions, powerful virtual memory support, cache coherency, optional SMP and SMT
support and support for fast context switching. Architecture defines several features for
networking and embedded computer environments. Most notable are severa instruction
extensons, configurable number of general-purpose registers, configurable cache and
TLB sizes, dynamic power management support and space for user provided instructions.
OpenRISC 1000 architecture is a predecessor of more powerful and richful next
generation OpenRISC architectures.

Implementations of the OpenRISC 1000 architecture are available in full source from
www.opencores.org and are supported with GNU software development tools and with a
behavioral simulator. Most OpenRISC implementations are designed modular and vendor
independent. They can be interfaced with other open source cores available from
WWW.OPEencores.org.

Opencores.org encourages third parties to design and market their own implementations

of the OpenRISC 1000 architecture and to participate in further development of the
architecture.

5.3 Acronymsand Abbreviations

ALU Arithmetic logic unit

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 13 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001
BAT | Block address translation
BIU Businterface unit
BTC Branch target cache
CPU Central processing unit
EA Effective address
FPU Floating-point unit
GPR General purpose register
MMU | Memory management unit
PTE Page table entry
R/W Read/Write
RISC | Reduced instruction set computing
SMP | Symmetrica multi-processing
SMT | Simultaneous multi-threading
SPR Special purpose register
TLB Trandation look aside buffer

Table 5-1. Acronymsand Abbreviations

5.4 Conventions

| . henoni ¢

|dentifies ORBIS32/64 instruction.

| v. menoni ¢

|dentifies ORV DX 32/64 instruction.

| f. rmenoni c

| dentifies ORFPX32/64 instruction.

0x Prefix indicates a hexadecimal number.

RA Instruction syntax used to identify a general purpose register

REJ Fl ELDJ Syntax used to identify specific bit(s) of a general or special
purpose register. FIELD can be a name of a one or a group of
bits or a numerical range constructed from two values
separated by a colon.

X In certain contexts thisindicates adon't care.

N In certain contexts this indicates an undefined numerical value.

| mpl enent ati on

Actua processor implementing OpenRISC 1000 architecture.

Modul e

Sometimes referred to as a coprocessor. A unit in
implementation usually with some speciad registers and
controlling instructions. It can be defined by the architecture or
it can be custom.

Excepti on A vectored transfer of control to supervisor software through a
exception vector table. A way in which a processor can request
operating system assistance (divison by zero, TLB miss,
external interrupt etc).

Privil eged An ingtruction (or register) that can only be executed (or

accessed) when the processor is in supervisor mode (when

WWW.0pPENCOores.org

Rev 0.1 Preliminary Draft 14 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

SR[SUPV]=1).
Table5-2. Conventions

5.5 Numbering

All numbers are decima or hexadecima unless otherwise indicated. The prefix Ox
indicates hexadecimal number. Decima numbers don't have any specia prefix. Binary
and other numbers are marked with their base.

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 15 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

6 Addressing M odes and Operand

Conventions

This chapter describes memory-addressing modes and memory operand conventions
defined by OpenRISC 1000 system architecture.

6.1 Memory Addressing M odes

The processor computes an effective address when executing memory access or branch
instruction or when fetching the next sequential instruction. If the sum of the effective
address and the operand length exceeds the maximum effective address in logical address
space, the memory operand is considered to wrap around from the maximum effective
through effective address 0.

6.1.1 Register Indirect with Displacement

Load/store instructions using this address mode contain a signed 16-bit immediate which
is sign extended and added to the contents of a general-purpose register specified in the
instruction.

,~ Instruction

s \

GPR Sign Extended Imm

Effective Address

Figure 6-1. Register Indirect with Displacement Addressing

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 16 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Figure 6-1 shows how an effective address is computed when using register indirect with
displacement addressing mode.

6.1.2 Register Indirect with Displacement and Update

Load/store instructions using this address mode contain a signed 16-bit immediate which
is sign extended and added to the contents of a general-purpose register specified in the
instruction. Computed EA is then used to update the general-purpose register that was
initially used to compute current EA.

_+ Instruction

s \

GPR Sign Extended Imm

Effective Address

Figure 6-2. Register Indirect with Displacement and Update

Figure 6-2 shows how an effective address is computed when using register indirect with
displacement and update addressing mode.

6.1.3 PC Relative

Branch instructions using this address mode contain a signed 26-bit immediate which is
sign extended and added to the contents of a Program Counter register.

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 17 of 339

OpenCores

OpenRISC 1000 System Architecture Manual

April 23, 2001

Instruction

v

PC Sign Extended Imm

Figure 6-3. PC Reative Addressing

Effective Address

Figure 6-3 shows how an effective address is generated when using PC relative

addressing mode.

6.2 Memory Operand Conventions

The architecture defines an 8-bit byte, 16-bit hafword, a 32-bit word and a 64-bit
doubleword. It aso defines IEEE-754 compliant 32-bit single precision float, 64-bit
double precision float and 128-bit quad precision float. And it defines 64-bit vector of
bytes, 64-bit vector of halfwords, 64-bit vector of singlewords and 64-bit vector of single

precision floats.

OPENRISC TERM LENGTH IN BYTES LENGTH IN BITS

Byte 1 8
Halfword (or half) 2 16
Singleword (or word) 4 32
Doubleword (or double) 8 64
Single precision float 4 32
Double precision float 8 64
Quad precision float 16 128
Vector of bytes 8 64
Vector of halfwords 8 64
Vector of singlewords 8 64
Vector of single precision floats 8 64

WWW.0pPENCOores.org

Table6-1. Memory Operands

Rev 0.1 Preliminary Draft

18 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

6.2.1 Bit and Byte Ordering

Byte ordering defines how the bytes those make up hafwords, singlewords and
doublewords, are ordered in memory. To simplify OpenRISC implementations,
architecture specifies as default byte ordering the most significant byte (MSB) ordering,
or big endian as it is sometimes called. But implementation can support least significant
byte (LSB) ordering if they implement byte reording hardware. Reordering is enabled
with bit SR[LEE].

The figures below illustrate the conventions for bit and byte numbering within various
width storage units. These conventions hold for both integer data and floating-point data,
where the most significant byte of a floating-point value holds the sign and at least the
start of the exponent.

Table 6-2 shows how bits and bytes are ordered in a halfword.

Bit 15 Bit8 | Bit7 BitO
MSB LSB
Byte address 0 Byte address 1

Table 6-2. Default Bit and Byte Ordering in Halfwords

Table 6-3 shows how bits and bytes are ordered in a singleword.

Bit 31 Bit 24 Bit 7 Bit0
MSB LSB
Byte address 0 Byte address 1 Byte address 2 Byte address 3

Table 6-3. Default Bit and Byte Ordering in Singlewords and Single Precision Floats

Table 6-4 shows how bits and bytes are ordered in a doubleword.

Bit 63 Bit 56
MSB
Byte address O Byte address 1 Byte address 2 Byte address 3

Bit 7 Bit 0
LSB
Byte address 4 Byte address 5 | Byte address 6 Byte address 7

Table 6-4. Default Bit and Byte Ordering in Doublewor ds, Double Precision Floats
and all Vector Types

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 19 of 339

OpenCores

6.2.2 Alignment and Misaligned Accesses

OpenRISC 1000 System Architecture Manual

April 23, 2001

A memory operand is naturally aligned if its address is integral multiple of the operand
length. Implementation might support accessing unaigned memory operands but default
behavioral is that accesses to unaligned operands result in alignment exception. See
chapter “Exception Model” on page 271 for information on alignment exception.

OPERAND LENGTH ADDR[3:0] IF ALIGNED
Byte 8 bits XXXX
Halfword (or half) 2 bytes Xxx0
Singleword (or word) 4 bytes Xx00
Doubleword (or double) 8 bytes X000
Single precision float 4 bytes Xx00
Double precision float 8 bytes X000
Vector of bytes 8 bytes X000
Vector of halfwords 8 bytes X000
Vector of singlewords 8 bytes X000
Vector of single precision floats 8 bytes X000

Table 6-5. Memory Operand Alignment

OR32 ingtructions are four bytes long and word-aligned.

WWW.0pPENCOores.org

Rev 0.1 Preliminary Draft

20 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

/ Register Set

/.1 Features

OpenRISC 1000 register set includes the following principal features:

Thirtytwo or sixteen 32/64-bit genera-purpose registers — OpenRISC 1000
implementations optimized for use in FPGAs and ASICs in embedded and similar
environments may implement only the first sixteen of possible thirty-two registers.
Thirty-two 64-hit vector/floating-point/DSP registers.

All other registers are special-purpose registers defined for each unit separately and
accessible through |.mtspr/l.mfspr instruction pair

7.2 Overview

An OpenRISC 1000 processor includes several types of registers. general-purpose and
special-purpose user-level registers, system control/status registers and unit dependent
registers.

General-purpose and special-purpose user-level registers are accessible both in user mode
and supervisor mode of operation. System control registers are accessible only in
supervisor mode of operation (SR[SUPV]=1).

Unit dependent registers are usually accessible only in supervisor mode but not
necessarily. Accessibility for architecture-defined units is defined in this manud.
Accessibility for custom units not covered by this manual, is defined in implementation
specific manuals.

7.3 Special-Pur pose Registers

Special-purpose registers of all modules are grouped into thirtytwo groups. Each group
can have different register address decoding depending on a maximum theorethical
number of registers in that particular group. One group can contain registers from severa
different modules. In register address decoding it is also used SR[SUPV] hit since some
registers are accessible only in supervisor mode. Instructions for reading and writing
registers are |.mtspr and |.mfspr.

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 21 of 339

OpenCores

OpenRISC 1000 System Architecture Manual

April 23, 2001

Figure 7-1. OpenRI SC 1000 Programming Model — Register s (needs

Registers

General Purpose
Registers
GPRO - GPR31

| |
i Floating-Point i
! Registers !
' FPRO-FPR15
I I

Condition Code
Register - CCR

Link Register
LR

Count Register

CTR
N)
“Time Base Module
Time Base
Control Register
TBCR

Time Base Low
Register - TBLR

e

update!)

Module

Data Cache
Control Register
DCCR

Data TLB
Registers
DCRO - DCR15

_________________ N

/Instruction Cache\‘.
Module

/

Instruction Cache
Control Register
IMMUCR

Instruction Cache
Registers
ICO - IC15

' '

1
1
I
I
I
I
I
I
|
|
I
I
1
I
I
|
I
I
I
I
!

” Debug Module

Insn Breakpoint
Address Register
IBAR

Data Breakpoint
Address Register

pm

/

e ———

Module

Data MMU
Control Register
DMMUCR

Data TLB
Registers
DTLBO - DTLB15

’ Instruction MMU
Module

Instruction MMU
Control Register
IMMUCR

N
A

Instruction TLB
Registers
ITLBO - ITLB15

Performance
Monitor Module

Performance
Monitor Control
Register -PMCR

DBAR Performance
Monitor
Time Base High Debug Status Registers
Register - TBHR Register - DSR PMRO - PMR3
N ,‘, ‘\ /l N o
System Control
Supervision PC Ssaved Exception EA
Register - SR Register - PCSR Register - EEAR

WWW.0pPENCOores.org

Rev 0.1 Preliminary Draft

22 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

GROUP # UNIT DESCRIPTION
0 System Control and Status Registers
1 DataMMU (in case of asingle unified MMU groups 1 and 2 decode in a
single set of registers)
2 Instruction MMU (in case of asingle unified MMU groups 1 and 2 decode
inasingle set of registers)
3 Data Cache (in case of asingle unified cache groups 3 and 4 decodein a

single set of registers)

Instruction Cache (in case of asingle unified cache groups 3 and 4 decode

inasingle set of registers)

MAC unit

Debug unit

Performance counters unit

Power Management

Programmable Interrupt Controller
10 Tick Timer

11-23 Reserved for future use

24-31 Custom units

D

O 00| N[O O

Table 7-1. Groups of SPRs

OpenRISC 1000 processor implementation is required to implement at least special
purpose registers from group 0. All other groups are optional and registers from these
groups are implemented only if the implementation has a corresponding unit. Which units
are implemented can be determined by reading the UPR register from group 0

GRP | REG | REGNAME USER SUPV DESCRIPTION
MODE MODE
0 1 VR - Read Only | Version Register
0 2 UPR - Read Only | Unit Present Register
0 3 SR - R/W Supervision Register
0 | 16-31 | EPCRO- - R/W Exception PC Registers
EPCR15
0 | 48-63 | EEARO- - R/W Exception EA Registers
EEAR15
0 | 64-79 | ESRO-ESR15 - R/W Exception SR Registers
1 | 0-255 | DTLBMRO- - Write Only | Data TLB Match Registers
DTLBMR255
1 256- | DTLBTRO- - Write Only | Data TLB Trandate
511 | DTLBTR255 Registers
1 512 | DMMUCR - R/W DataMMU Control
Register
1 513 | DMMUPR - R/W DataMMU Protection
Register
1 514 | DTLBEIR - wW Data TLB Entry Invalidate

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 23 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001
Register
2 | 0-255 | ITLBMRO- - R/W Instruction TLB Match
ITLBMR255 Registers
2 256- | ITLBTRO- - R/W Instruction TLB Trandate
511 | ITLBTR255 Registers
2 512 | IMMUCR - R/W Instruction MMU Control
Register
2 513 | IMMUPR - R/W Instruction MMU Protection
Register
2 514 | ITLBEIR - R/W Instruction TLB Entry
Invalidate Register
3 0 DCCR - R/W DC Control Register
3 1 DCBPR w wW DC Block Prefetch Register
3 2 DCBFR w wW DC Block Flush Register
3 3 DCBIR - W DC Block Invalidate
Register
3 4 DCBWR w wW DC Block Write-back
Register
3 5 DCBLR W W DC Block Lock Register
4 0 ICCR - R/W |C Control Register
4 1 ICBPR w wW IC Block PreFetch Register
4 3 ICBIR W W |C Block Invalidate Register
4 5 ICBLR W W IC Block Lock Register
5 0 MACLO R/W R/W MAC Low
5 1 MACHI R/W R/W MAC High
6 0-7 | DVRO-DVR7 - R/W Debug Vaue Registers
6 8-15 | DCRO-DCR7 - R/W Debug Control Registers
6 16 | DMR1 - R/W Debug Mode Register 1
6 17 | DMR2 - R/W Debug Mode Register 2
6 | 18-19 | DCWRO- - R/W Debug Watchpoint Counter
DCWR1 Registers
6 20 | DSR - R/W Debug Stop Register
6 21 | DRR - R/W Debug Reason Register
6 22 | DIR - R/W Debug Ingtruction Register
7 0-7 | PCCRO- R/W* R/W Performance Counters
PCCR7 Count Registers
7 8-15 | PCMRO- - R/W Performance Counters
PCRM7 Mode Registers
8 0 PMR - R/W Power Management
Register
9 0 PICMR - R/W PIC Mask Register
9 1 PICPR - R/W PIC Priority Register
9 2 PICSR - R/W PIC Status Register
10 0 TTCR - R/W Tick Timer Control Register

WWW.0pPENCOores.org

Rev 0.1 Preliminary Draft

24 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

10 1 TTIR R/W R/W Tick Timer Incrementing
Register

Table7-2. List of All Special-Purpose Registers

7.4 General-Purpose Registers (GPRS)

The thirtytwo 32-bit general-purpose registers are labeled RO-R31. They hold integer data
or memory pointers used by instructions. Table 7-3 contains a list of general-purpose
registers and functions for which they are used. The GPRs are accessed as source and
destination registersin the instruction syntax.

REGISTER R31 R30
REGISTER | R29 R28 R27 R26 R25 R24
REGISTER | R23 R22 R21 R20 R19 R18
REGISTER | R17 R16 R15 R14 R13 R12
REGISTER R11 R10 R9 R8 R7 R6
REGISTER R5 R4 R3 R2 R1 RO

Table 7-3. Lower and Upper Parts of General-Pur pose Registers

RO is used as a constant zero. Whether is RO actually hardwired to zero, is
implementation dependent. RO should never be used as a destination register. Functions
of other registers are explained in chapter “ Application Binary Interface” on page 331.

Implementation may have several sets of GPRs and use them as shadow registers,
switching between them whenever a new exception occurs. Current set is identified with
SR[CID] value.

Implementation is not required to initialize GPRs to zero during reset procedure. It is a
responsibility of areset exception handler to initialize GPRs to zero if that is necessary.

7.5 Special Sixteen GPRs Support

Programs can be compiled with upper sixteen registers disabled (set as fixed registers).
Such programs are aso executable on norma implementation with thirty-two registers
but not vice versa. This feature is quite useful since users will move from less powerful
OpenRISC implementations with sixteen registers to more powerful thirtytwo register
OpenRISC implementations.

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 25 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

7.6 Vector/Floating-Point Registers (VFRS)

The thirtytwo vector/floating-point registers are 32 bits wide in 32-bit implementations
that do not support double-precision floating-point arithmetic nor vector arithmetic. They
are 64 bits wide in implementations that support either double-precision floating-point
arithmetic or vector arithmetic. They are labeled VFRO-VFR31. Table 7-4 contains a list
of these floating-point registers. The VFRs are accessed as source and destination
registers in vector and floating-point instructions. See chapter “Application Binary
Interface” on page 331 for information on floating-point data types.

REGISTER VFR31 VFR30 VFR29 VFR28
REGISTER VFR27 VFR26 VFR25 VFR24 VFR23 VFR22
REGISTER VFR21 VFR20 VFR19 VFR18 VFR17 VFR16
REGISTER VFR15 VFR15 VFR15 VFR14 VFR13 VFR12
REGISTER VFR11 VFR10 VFR9 VFR8 VFR7 VFR6
REGISTER VFR5 VFR4 VFR3 VFR2 VFR1 VFRO

Table 7-4. Floating-Point Registers

7.6.1 Condition Code Register (CCR0O-CCR15)

Condition code register is a 32-bit special-purpose user-level register accessible with
|.mtspr/l.mfspr instruction pair.

Flag named FLAG is set by sfXX instructions as a result of a compare operation. Flag
named CY is set by arithmetic operations as a result of a carry out and used with addic
instruction. Flag named OVERFL is set by arithmetic operations when overflow occurs.

BIT 31-3 2 1 0
Identifier Reserved OVERFL | CARRY | FLAG
Reset 0 0 0 0

RIW Read Only RIW RIW RIW

FLAG Conditional branch flag

0 FLAG flag was cleared by sfXX instructions

1 FLAG flag was set by sfXX instructions

CY Carry flag

0 No carry out produced by last arithmetic operation
1 Carry out was produced by last arithmetic operation
OVERFL | Overflow flag

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 26 of 339

OpenCores

OpenRISC 1000 System Architecture Manual

April 23, 2001

0 No overflow occured during last arithmetic operation
1 Overflow occured during last arithmetic operation (might even result in

aoverflow exception)

Table 7-5. CCR Fidd Descriptions

7.7 Supervision Register (SR)

The supervison register is a 32-bit special-purpose supervisor-level register accessible
with |.mtspr/l.mfspr instruction pair only in supervisor mode.

It defines the state of the processor.

BIT 31-28 27-12 11 10 9 8 7
Identifier | CID Reserved ov | CY F CE | LEE
Reset 0 0 0 0 0 0 0
R/W R/W Read Only R/W | RIW | RI\W | RIW | RI'W
BIT 6 5 4 3 2 1 0
[dentifier IME DME ICE DCE EIR EXR SUPV
Reset 0 0 0 0 0 0 1
R/W R/W R/W R/W R/W R/W R/W R/W
SUPV Supervisor Mode

0 Processor isin User Mode

1 Processor isin Supervisor Mode
EXR Exception Recognition

0 Exceptions are not recognized

1 Exceptions are recognized
EIR External Interrupt Recognition

0 External Interrupts are not recognized

1 External Interrupts are recognized
DCE Data Cache Enable

0 Data Cacheis not enabled

1 Data Cacheis enabled
ICE Instruction Cache Enable

0 Instruction Cache is not enabled

1 Instruction Cache is enabled
DME DataMMU Enable

0 DataMMU is not enabled

1 DataMMU is enabled
IME Instruction MMU Enable

0 Instruction MMU is not enabled

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 27 of 339

OpenCores

OpenRISC 1000 System Architecture Manual April 23, 2001

1 Instruction MMU is enabled

LEE

Little Endian Enable
O Little Endian (L SB) byte ordering is not enabled
1 Little Endian (LSB) byte ordering is enabled

CE

CID Enable
0 CID automatic increment and shadow registers disabled
1 CID automatic increment and shadow registers enabled

Flag
0 Conditional branch flag was cleared by sfXX instructions
1 Conditional branch flag was set by sFXX ingtructions

CY

Carry flag
0 No carry out produced by last arithmetic operation
1 Carry out was produced by last arithmetic operation

ov

Overflow flag

0 No overflow occured during last arithmetic operation

1 Overflow occured during last arithmetic operation (might even result in
arange exception)

CID

Context ID
0-15 Current Processor Context

Table 7-6. SR Field Descriptions

7.8 Exception Program Counter Registers
(EPCRO - EPCR15)

The exception program counter registers are special-purpose supervisor-level registers
accessible with I.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user
mode is possible, if it is enabled in PCMRO[UMRA]. They are 32 bits wide registersin
32-bit implementations and can be wider than 32 bits in 64-bit implementations.

After an exception EPCR is set to the program counter address (PC) of the instruction
that was interrupted by the exception. If only one EPCR is present in the implementation,
it must be saved by the exception handler routine before exception recognition is re-

enabled in SR.
BIT 31-0
| dentifier EPC
Reset 0
R/W R/W
| EPC | Exception Program Counter Address

Table 7-7. EPCR Field Descriptions

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 28 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

7.9 Exception Effective Address Registers
(EEARO-EEAR15)

The exception effective address registers are special-purpose supervisor-level registers
accessible with I.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user
mode is possible, if it is enabled in PCMRO[UMRA]. They are 32 bits wide registersin
32-bit implementations and can be wider than 32 bits in 64-bit implementations.

After an exception EEAR is set to the effective address (EA) generated by the faulting
instruction. If only one EEAR is present in the implementation, it must be saved by the
exception handler routine before exception recognition is re-enabled in SR.

BIT 31-0

| dentifier EEA

Reset 0

RIW RIW
| EEA | Exception Effective Address

Table 7-8. EEAR Field Descriptions

7.10 Exception Supervision Registers (ESRO-
ESR15)

The exception supervision registers are special-purpose supervisor-level registers
accessible with I.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user
mode is possible, if it is enabled in PCMRO[UMRA]. They are 32 bits wide registersin
32-bit implementations and can be wider than 32 bits in 64-bit implementations.

After an exception supervision register (SR) is copied into ESR. If only one ESRR is
present in the implementation, it must be saved by the exception handler routine before
exception recognition is re-enabled in SR.

BIT 31-0
| dentifier ESR
Reset 0
R/W R/W
| EEA | Exception SR |

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 29 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Table 7-9. ESR Field Descriptions

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 30 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

8 Instruction Set

This chapter describes OpenRISC 1000 instruction set.

8.1 Features

OpenRISC 1000 instruction set includes the following principal features:

Simple and uniform-length instruction formats featuring three Instruction Subsets
OpenRISC Basic Instruction Set (ORBIS32/64) with 32 bits wide instructions aligned
on 32-bit boundaries in memory and operating on 32 bits and 64 bits data

OpenRISC Vector/DSP eXtenson (ORVDX64) with 32 bits wide instructions
aligned on 32-bit boundaries in memory and operating on 8, 16, 32 and 64 bits data
OpenRISC Floating-Point eXtension (ORFPX32/64) with 32 bits wide instructions
aligned on 32-bit boundaries in memory and operating on 32 bits and 64 bits data
Reserved opcodes for custom instructions

Instructions divided into instruction classes where only the basic classes are required

to be implemented in OpenRISC 1000 implementation

ORVDX64
ORBIS32

I nstruction Set

ORBIS64 ORFPX64

Figure 8-1. Instruction Set

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 31 of 339

OpenCores

OpenRISC 1000 System Architecture Manual April 23, 2001

8.2 Overview

OpenRISC 1000 instructions belong to one of the following instruction subsets:
- ORBIS32:
= 32-bit integer instructions
= 32-bit load and store instructions
= program flow instructions
= gpecia instructions
ORBI S64:
= 64-bit integer instructions
= 64-bit load and store instructions
ORFPX32:
= gingle-precision floating-point instructions
ORFPX64:
= Double-precision floating-point instructions
= 64-bit load and store instructions
ORVDX64:
= vector instructions
= DSPingdructions

Instructions in each subset are also split into two instruction classes according to
implementation importance:

» basicclass

= advanced class

Class Description
Basic Instructions in basic class must always be implemented.
Advanced Instructions from dvanced class are optional and implementation may

choose to implement some or al instructions from this class based on
requirements of the target application.

Table 8-1. OpenRISC 1000 I nstruction Classes

8.3 ORBIS32/64

WWW.OPEeNCcOores.org Rev 0.1 Preliminary Draft 32 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.add Add Signed |.add

31)..[[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved X0 reserved X0

| 6bits | 5bits | S5bits | 5hits | 3bits | 2bits | 2bits | 4bits |

Format:

|.add rD,rA rB

Description:
The contents of general-purpose register rA is added to the contents of

general-purpose register rB to form the result. The result is placed into
general-purpose register rD.

32-bit Implementation:
rD[31: 0] <- rA[31:0] + rB[31:0]

SR CY] <- carry
SR OV] <- overflow

64-bit | mplementation:

rD[63:0] <- rA[63:0] + rB[63:0]
SR CY] <- carry
SR OV] <- overflow

Exceptions:

Range Exception

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 33 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.addc Add Signed and Carry |.addc

31)..[[2625].][22 /20].|. | 16 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved 0xO reserved Oxl

| 6bits | 5bits | S5bits | 5hits | 3bits | 2bits [2bits | 4bits |

Format:

|.addc rD,rA rB

Description:
The contents of general-purpose register rA is added to the contents of

general-purpose register rB and carry SR[CY] to form the result. The
result is placed into general-purpose register rD.

32-bit Implementation:
rD[31: 0] <- rA[31:0] + rB[31:0]

SR CY] <- carry
SR OV] <- overflow

64-bit | mplementation:

rD[63:0] <- rA63:0] + rB[63:0]
SR CY] <- carry
SR OV] <- overflow

Exceptions:

Range Exception

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 34 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.addi Add Immediate Signed |.addi
3| [-[26]25][] [|[22 20 [[. 16 35 | [L L EL R o]
opcodeOx27| D | A | I |
| 6bits | Shbits | S5hits | 16 bits |
For mat:
[.addi rD,rA I
Description:

Immediate is signed-extended and added to the contents of general-
purposeregister rA to form the result. The result is placed into general-
purposeregister rD.

32-bit Implementation:
rff31:0] <- rA[31:0] + exts(Imredi ate)

SR CY] <- carry
SR OV] <- overflow

64-bit | mplementation:
rp[63:0] <- rA63:0] + exts(lnmediate)

SR CY] <- carry
SR OV] <- overflow

Exceptions:

Range Exception

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 35 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.and And |.and

31)..[[2625].][22 /20].|. | 16 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved 03

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:

l.and rD,rA rB

Description:

The contents of genera-purpose register rA are combined with the
contents of genera-purpose register rB in a bit-wise logical AND
operation. The result is placed into general-purpose register rD.

32-bit Implementation:

rD[31: 0] <- rA[31:0] AND rB[31: 0]
64-bit | mplementation:

rD[63:0] <- rA[63:0] AND rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 36 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.andi And with Immediate Half Word |.andi
3 [2625] 22 (20 - (26 [as [H HEER F R

|
opcodeOx29| D | A | K |
| 6bits | Shbits | S5hits | 16 bits |

Format:
|.andi rD,rA K
Description:

Immediate is zero-extended and combined with the contents of general-
purpose register rB in a bit-wise logical AND operation. The result is
placed into general-purpose register rD.

32-bit Implementation:

rD[31: 0] <- rB[31:0] AND extz(|nmediate)
64-bit | mplementation:

rD[63:0] <- rB[63:0] AND extz(|medi ate)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 37 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.bf Branch if Flag |.bf
U8 25 LHER R EE R DU R]
‘opcode 0x4 | N |
| 6bits | 26 bits |
For mat:
|.bf N
Description:

Theimmediate is shifted left two bits, sign-extended to program counter
width and then added to the address of the delay slot. Theresult is
effective address of the branch. If the compare flag is set, then the
program branches to EA with adelay of one instruction.

32-bit Implementation:

EA <- (Immediate || 00) + Del ayl nsnAddr
PC <- EAif flag set

64-bit | mplementation:

EA <- (Immediate || 00) + Del ayl nsnAddr
PC <- EAif flag set

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 38 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.onf Branch if No Flag |.onf
U8 25 LHER R EE R DU R]
‘opcode 0x3 | N |
| 6bits | 26 bits |
For mat:
|.bnf N
Description:

Theimmediate is shifted left two bits, sign-extended to program counter
width and then added to the address of the delay dot. The result is
effective address of the branch. If the compare flag is cleared, then the
program branches to EA with adelay of one instruction.

32-bit Implementation:

EA <- (Immediate || 00) + Del ayl nsnAddr
PC <- EAif flag cleared

64-bit | mplementation:

EA <- (Immediate || 00) + Del ayl nsnAddr
PC <- EAif flag cleared

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 39 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.brk Breakpoint |.brk
BUREHHEELEEERE s As U R]
| opcode 0x2100 | K |
| 16 bits | 16 bits |
For mat:
|.brk K
Description:

Execution of the breakpoint instruction results in the breakpoint exception.
Breakpoint exception is arequest to the operating system and to the debug
facility to execute certain debug services. Immediate is used by the debug

to identify which breakpoint it is.

32-bit Implementation:

br eakpoi nt - except i on(K)
64-bit | mplementation:

br eakpoi nt - except i on(K)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 40 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.csync Context Syncronization l.csync
A
| opcode 0x23000000 |
| 32 bits |
Format:
| .csync
Description:

Execution of context synchronization instruction results in completion of
all operationsinside RISC and flush of the instruction pipelines. When al
operations are complete, RISC core resumes with empty instruction
pipeline and fresh context in al units (MMU for example).

32-bit Implementation:

cont ext - synchroni zati on

64-bit | mplementation:

cont ext - synchroni zati on

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 41 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.custl . |.custl
I nstructions

U288 LR R EEER REHEEE DEEEEE o)
lopcode Ox1c | reserved
| 6bits | 26 bits

Format:

. custl
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 42 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.cust2 . |.cust2
Instructions
A A el
lopcode Ox1d | reserved
| 6bits | 26 bits

Format:
| . cust?2
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 43 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.cust3 . |.cust3
| nstructions
301128 28R R R IR R DEER L el
lopcode Ox 1€ | reserved
| 6bits | 26 bits
Format:
| .cust3
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 44 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.cust4 . |.cust4
| nstructions
30 [J[J0]1) 2825 R R HHER R DR R EL
lopcode Ox1f | reserved
| 6bits | 26 bits

Format:
| .cust4
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 45 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.custS . |.custS
| nstructions
301128 28R R R IR R DEER L el
lopcode 0x3c | reserved
| 6bits | 26 bits
Format:
| .custb
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 46 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.cust6 . |.cust6
Instructions
A A A A A
lopcode 0x3d | reserved
| 6bits | 26 bits

Format:
| .cust6
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit I mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 47 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.cust7 . |.cust7
| nstructions
U288 LR R EEER REHEEE DEEEEE o)
lopcode 0x3e | reserved
| 6bits | 26 bits
Format:
| .cust7
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 48 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORBIS32/64 Custom

|.cust8 . |.cust8
| nstructions
30 [J[J0]1) 2825 R R HHER R DR R EL
lopcode Ox3f | reserved
| 6bits | 26 bits

Format:
| . cust8
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class\lmplementation‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 49 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.div Divide Signed |.div

31)..[[2625].][22 /20].|. | 16 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved 0xO

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:
l.div rD,rArB
Description:

The contents of general-purpose register rA are divided by the contents of
general-purpose register rB and the result is placed into genera - purpose
register rD. Both operands are treated as signed integers. A divide by zero
flag is set when the divisor is zero.

32-bit Implementation:

rD[31: 0] <- rA31:0] / rB[31:0]
SR OV] <- overflow

64-bit | mplementation:

r0f63:0] <- rA[63:0] / rB[63:0]
SR OV] <- overflow

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 50 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.divu Divide Unsigned |.divu
1) [[2625].][22 /20].|. | 16 [25]. [[.[12/10 [.[8]7 | 65 [43 .[.[0

opcode opcode opcode
‘ 0x38 ‘ D ‘ A ‘ B reserved 0xO reserved Oxa

| 6bits | 5hits | 5hits | 5hits | 3hits | 2bits | 2bits | 4hbits

Format:
l.divu rD,rA rB
Description:

The contents of genera-purpose register rA are divided by the contents of
general-purpose register rA and the result is placed into general-purpose
register rD. Both operands are treated as unsigned integers. A divide by
zero flag is set when the divisor is zero.

32-bit Implementation:

rD[31: 0] <- rA31:0] / rB[31:0]
SR OV] <- overflow

64-bit | mplementation:

r0f63:0] <- rA[63:0] / rB[63:0]
SR OV] <- overflow

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 51 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.extbs Extend Byte with Sign |.extbs

31)..[[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8]7 | 65 [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved Xl reserved OXC

| 6bits | 5hits | 5hits | 5hits | 3hits | 2bits | 2bits | 4hbits

Format:

| .extbs rD,rA rB

Description:
Bit 7 of general-purpose register rA is placed in high-order bits of general-
purpose register rD. The low-order eight bits of general-purpose register
rA are copied from low-order eight bits of general-purpose register rD.

32-bit Implementation:

rD[31:8] <- rA7]
rp[7:0] <- rA7:0]

64-bit | mplementation:

rD[63:8] <- rA7]
rp[7:0] <- rA7:0]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 52 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.extbz Extend Byte with Zero |.extbz

31)..[[26/25].][22 /20].|. | 16 [25]. [[.[12/10 [.[8]7 | 65 [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved 03 reserved OXC

| 6bits | 5hits | 5hits | 5hits | 3hits | 2bits | 2bits | 4hbits

Format:
| .extbz rD, rA rB
Description:

Zeroisplaced in high-order bits of general-purpose register rD. The low-
order eight bits of general-purpose register rA are copied into low-order
eight bits of general-purpose register rD.

32-bit Implementation:

rpf31:8] <- O
rp[7:0] <- rA7:0]

64-bit | mplementation:

rp[63:8] <- 0
rof7:0] <- rA7:0]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 53 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.exths Extend Half Word with Sign |.exths

1) [[2625].][22 /20].|. | 16 [25]. [[.[12/10 [.[8]7 | 65 [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved 0xO reserved OXC

| 6bits | 5hits | 5bits | 5hits | 3hbits | 2bits | 2bits | 4hbits

Format:

| .exths rD, rA rB

Description:

Bit 15 of general-purpose register rA is placed in high-order bits of
general-purpose register rD. The low-order 16 bits of general-purpose
register rA are copied into low-order 16 bits of general-purpose register
rD.

32-bit Implementation:

rDOf 31: 16] <- rA[15]
rO 15: 0] <- rA[15:0]

64-bit | mplementation:

rDf 63: 16] <- rA[15]
rO 15: 0] <- rA[15:0]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 54 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.exthz Extend Half Word with Zero |.exthz

31)..[[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8]7 | 65 [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved 0x2 reserved OXC

| 6bits | 5hits | 5hits | 5hits | 3hits | 2bits | 2bits | 4hbits

Format:
| .exthz rD, rA rB
Description:

Zero is placed in high-order bits of general-purpose register rD. The low-
order 16 bits of general-purpose register rA are copied into low-order 16
bits of general-purpose register rD.

32-bit Implementation:

rD[31:16] <- O
rDf 15: 0] <- rA[15: 0]

64-bit | mplementation:

rD[63:16] <- O
rDf 15: 0] <- rA[15: 0]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 55 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.extws Extend Word with Sign |.extws

31)..[[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [‘6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved oxd

| 6bits | 5hits | 5bhits | 5hits | 3bits | 2bits | 2hits | 4hbits

Format:

| .extws rD, rA rB

Description:

Bit 31 of general-purpose register rA is placed in high-order bits of
general-purpose register rD. The low-order 32 bits of general-purpose
register rA are copied from low-order 32 bits of general-purpose register
rD.

32-bit Implementation:
rO 31: 0] <- rA[31:0]

64-bit | mplementation:

rD63:32] <- rAl 31]
rDf 31: 0] <- rA[31:0]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBISBAIl | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 56 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.extwz Extend Word with Zero |.extwz

1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved 0x2 reserved oxd

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:

| .extwz rD,rA rB

Description:

Zero is placed in high-order bits of general-purpose register rD. The low-
order 32 bits of general-purpose register rA are copied into low-order 32
bits of general-purpose register rD.

32-bit Implementation:
rDf 31: 0] <- rA[31:0]

64-bit | mplementation:

rff63:32] <- 0
rO 31: 0] <- rA[31:0]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBISBAIl | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 57 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

] Jump]
U8 25 LHER R EE R DU R]
‘opcode 0xO | N |
| 6bits | 26 bits |
For mat:
l.j N
Description:

Theimmediate is shifted left two bits, sign-extended to program counter
width and then added to the address of the delay dot. The result is
effective address of the jump. The program unconditionally jumps to EA
with adelay of oneinstruction.

32-bit Implementation:

PC <- (Immediate || 00) + Del ayl nsnAddr
LR <- Del ayl nsnAddr + 4

64-bit | mplementation:

PC <- (I'mmediate || 00) + Del ayl nsnAddr
LR <- Del ayl nsnAddr + 4

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 58 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.jal Jump and Link |.jal
U8 25 LHER R EE R DU R]
‘opcode Ox1 | N |
| 6bits | 26 bits |
For mat:
l.jal N
Description:

Theimmediate is shifted left two bits, sign-extended to program counter
width and then added to the address of the delay dot. The result is
effective address of the jump. The program unconditionally jumps to EA
with adelay of one instruction. The address of the instruction after the
delay dot isplaced in the link register.

32-bit Implementation:

PC <- (Imediate || 00) + Del ayl nsnAddr
LR <- Del ayl nsnAddr + 4

64-bit | mplementation:

PC <- (Imediate || 00) + Del ayl nsnAddr
LR <- Del ayl nsnAddr + 4

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.OpPENCOres.org Rev 0.1 Preliminary Draft 59 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

ljalr Jump and Link Register |.jalr

A A A A A A
opcodeOx12| reseved | B | reserved |
| 6bits | 10bits | 5bits | 1lbits |

5

Format:
l.jalr rB
Description:

The contents of general-purpose register rB is effective address of the
jump. The program unconditionally jumpsto EA with adelay of one
instruction. The address of the instruction after the delay slot is placed in
the link register.

32-bit Implementation:

PC <- rB
LR <- Del ayl nsnAddr + 4

64-bit | mplementation:

PC <- rB
LR <- Del ayl nsnAddr + 4

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Requred |

WWW.0pencores.org Rev 0.1 Preliminary Draft 60 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

ljr Jump Register ljr
3212 [26]/25][] [[26 28 122 ol LR o]
opcodeOx11| reseved | B | reserved |
| 6bits | 10bits | 5bits | 1lbits |
For mat:
l.jr rB
Description:

The contents of general-purpose register rB is effective address of the
jump. The program unconditionally jumpsto EA with adelay of one
instruction.

32-bit Implementation:
PC < rB

64-bit | mplementation:
PC <- rB

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 61 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ibs L oad Byte and Extend with Sign |.Ibs
3| [-[26]25][] [|[22 20 [[. 16 35 | [L L EL R o]
opcodeOx24| D | A | I |
| 6bits | Shbits | S5hits | 16 bits |
For mat:
l.Ibs rD, 1(rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The byte in memory
addressed by EA isloaded into the low-order eight bits of general-purpose
register rD. High-order bits of general-purpose register rD are replaced
with bit 7 of the loaded value.

32-bit Implementation:

EA <- exts(lnmmediate) + rA[31:0]
rof7:0] <- (EA)[7:0]
rD[31:8] <- rAl8]

64-bit | mplementation:
EA <- exts(Immediate) + rA[63:0]

rD[7:0] <- (EA)[7:0]
rff63:8] <- rAl8]

Exceptions:

TLB mi ss
Page fault
Bus error

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 62 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ibs L oad Byte and Extend with Sign |.Ibs

fWWfrFWTTWTTTWWWWWWWH
opcodeOx24| D | A |
| 6bits | 5hits | 5hits | 16 bits ‘

Notes:

Instruction Class | Implementation ‘
| ORBIS®2I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 63 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ibz L oad Byte and Extend with Zero |.Ibz
32| [-[26]25][] [|[22 20 [[. 16 35 | [L EEEL R o]
opcodeOx23| D | A | I |
| 6bits | Shbits | S5hits | 16 bits |
For mat:
l.Ibz rD,1(rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The byte in memory
addressed by EA isloaded into the low-order eight bits of general-purpose
register rD. High-order bits of general-purpose register rD are replaced
with zero.

32-bit Implementation:

EA <- exts(lnmmediate) + rA[31:0]
rof7:0] <- (EA)[7:0]
rpf31:8] <- 0

64-bit | mplementation:

EA <- exts(Immediate) + rA[63:0]
rof7:0] <- (EA)[7:0]
rp[63:8] <- 0

Exceptions:

TLB mi ss
Page fault
Bus error

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 64 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ibz L oad Byte and Extend with Zero |.Ibz

fWWfrFWTTWTTTWWWWWWWH
opcodeOx23| D | A |
| 6bits | 5hits | 5hits | 16 bits ‘

Notes:

Instruction Class | Implementation ‘
| ORBIS®2I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 65 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.1d L oad Double Word l.1d

31| .[26125]. 21 120]. .. [16[35 .| .11 L L L
opcode0x20| D | A | I |
| 6bits | Shbits | S5hits | 16 bits |

0

For mat:
[.1d rD 1(rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The double word in memory
addressed by EA isloaded into general-purpose register rD.

32-bit Implementation:
N A

64-bit | mplementation:

EA <- exts(Imediate) + rA[63:0]
r0 63:0] <- (EA)[63:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBISSAI | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 66 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ihs Load Half Word and Extend with Sign |.Ihs
3| [-[26]25][] [|[22 20 [[. 16 35 | [L L EL R o]
opcodeOx26| D | A | I ‘
| 6bits | 5hits | 5hits | 16 bits ‘
For mat:
l.Ihs rD, 1(rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The half word in memory
addressed by EA isloaded into the low-order 16 bits of general-purpose
register rD. High-order bits of general-purpose register rD are replaced
with bit 15 of the loaded value.

32-bit Implementation:

EA <- exts(lmediate) + rA[31:0]
rD[15: 0] <- (EA)[15:0]
rDf 31: 16] <- rA[15]

64-bit | mplementation:

EA <- exts(Imediate) + rA[63:0]
rO 15: 0] <- (EA)[15:0]
rf63: 16] <- rA[15]

Exceptions:

TLB mi ss
Page fault
Bus error

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 67 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ihs Load Half Word and Extend with Sign |.Ihs

fWWfrFWTTWTTTWWWWWWWH
opcodeOx26| D | A |
| 6bits | 5hits | 5hits | 16 bits ‘

Notes:

Instruction Class | Implementation ‘
| ORBIS®2I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 68 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.Ihz Load Half Word and Extend with Zero |.Ihz
3128251 22 oo [es a5 R FEEEEREE)
opcodeOx25| D | A | I |
| 6bits | Shbits | S5hits | 16 bits |
Format:
l.1hz rD,1(rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The half word in memory
addressed by EA isloaded into the low-order 16 bits of general-purpose
register rD. High-order bits of general-purpose register rD are replaced
with zero.

32-bit Implementation:

EA <- exts(lmediate) + rA[31:0]
rD[15: 0] <- (EA)[15:0]
rD[31:16] <- O

64-bit | mplementation:

EA <- exts(Immediate) + rA[63:0]
rO 15: 0] <- (EA)[15:0]
rff63:16] <- 0

Exceptions:

TLB mi ss
Page fault
Bus error

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 69 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.Ihz L oad Half Word and Extend with Zero |.Ihz

fWWfrFWTTWTTTWWWWWWWH
opcodeOx25| D | A |
| 6bits | 5hits | 5hits | 16 bits ‘

Notes:

Instruction Class | Implementation ‘
| ORBIS®2I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 70 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

llws Load SingleWord and Extend with Sign l.lws

3L - [26]/25]F [22 [20])1 s s o L LR R L)
opcode0x22| D | A | I ‘
| 6bits | 5hits | 5hits | 16 bits ‘
Format:
[.Iws rD, 1 (rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The single word in memory
addressed by EA isloaded into the low-order 32 bits of general-purpose
register rD. High-order bits of general-purpose register rD are replaced
with bit 31 of the loaded value.

32-bit Implementation:

EA <- exts(lnmmediate) + rA[31:0]
rD[31: 0] <- (EA)[31:0]

64-bit | mplementation:
EA <- exts(lmediate) + rA[63:0]

rD[31: 0] <- (EA)[31:0]
rDf 63:32] <- rA[31]

Exceptions:
TLB m ss

Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 71 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

llwz Load SingleWord and Extend with Zero |.lwz
3| [-[26]25][] [|[22 20 [[. 16 35 | [L L EL R o]
opcodeOx21| D | A | I ‘
| 6bits | 5hits | 5hits | 16 bits ‘
For mat:
[.Iwz rD, 1(rA
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The single word in memory
addressed by EA isloaded into the low-order 32 bits of general-purpose
register rD. High-order bits of general-purpose register rD are replaced
with zero.

32-bit Implementation:

EA <- exts(lnmmediate) + rA[31:0]
rD[31: 0] <- (EA)[31:0]

64-bit | mplementation:
EA <- exts(lmediate) + rA[63:0]

rD[31: 0] <- (EA)[31:0]
rp[63:32] <- O

Exceptions:
TLB m ss

Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 72 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.mac Multiply Signed and Accumulate l.mac

1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved Ox7

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:

l.mac rD,rA rB

Description:

The contents of genera-purpose register rA and the contents of general-
purpose register rB are multiplied and the result is truncated to 32 bits and
added to the special-purpose registers MACHI and MACLO. All operands
are treated as signed integers.

32-bit Implementation:

M31:0] <- rA[31:0] * rB[31l:0]

MACHI [31: 0] MACL(O 31: 0] <- M 31:0] +
MACHI [31: 0] MACL(31: 0]

SR OV] <- overflow

64-bit | mplementation:
M31:0] <- rA[63:0] * rB[63:0]
MACHI [31: 0] MACL(O 31: 0] <- M 31:0] +

MACHI [31: 0] MACLJ 31: 0]
SR OV] <- overflow

Exceptions:

None

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 73 0of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.mac Multiply Signed and Accumulate l.mac

a1 2625 [[et/20 L Lasfus]. [itfio 87 [o5 | 433][0

opcode opcode opcode
0x38 ‘ D ‘ A ‘ B reserved OxO reserved Ox7
| 6bits | 5hits | 5bits | 5bits | 3bits | 2bits | 2bits | 4hbits
Notes:

Instruction Class | Implementation ‘
| ORBIS®2II | Optiond |

WWW.0pencores.org Rev 0.1 Preliminary Draft 74 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Multiply Immediate Signed and

|.maci |.maci
Accumulate
3 [[26][25] 22 (20 - (26 [as [H HEER F R
opcodeOx2d, D | A | I
| 6bits | 5hits | 5hits | 16 bits
Format:

| .maci rD rA I

Description:

Immediate and the contents of general-purpose register rA are multiplied
and the result is truncated to 32 bits and added to the special-purpose
registers MACHI and MACLO. All operands are treated as signed
integers.

32-bit Implementation:

M31:0] <- rA[31:0] * Imedi ate
MACHI [31: 0] MACL(O 31:0] <- M 31:0] +
MACHI [31: 0] MACL(31: 0]

SR OV] <- overflow

64-bit | mplementation:
M31:0] <- rA[63:0] * Imedi ate
MACHI [31: 0] MACL(O 31:0] <- M 31:0] +

MACHI [31: 0] MACLQ 31: 0]
SR OV] <- overflow

Exceptions:

None

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 75 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Multiply Immediate Signed and

|.maci Accumulate |.maci
fWWfTFWTTWTTTWWWWWWWH
opcodeOx2d, D | A |
| 6bits | 5hits | 5hits | 16 bits

Notes:

Instruction Class | Implementation ‘
| ORBIS®2II | Optiond |

WWW.0pencores.org Rev 0.1 Preliminary Draft 76 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.mfspr Move From Special-Purpose Register |.mfspr

1] /26 25 1l /e [e s L UEEE R]
lopcodeOx7| D | A | K |

| 6bits | 5bits | 5hits | 16 bits

Format:
| .mfspr rD,rA K
Description:

The contents of special register identified by the sum of general-purpose
rA and zero-extended immediate are moved into general-purpose register
rD.

32-bit Implementation:

rD[31:0] <- spr(rA+extz(|mmediate))
64-bit | mplementation:

rD[63: 0] <- spr(rA+extz(|mediate))
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 77 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.movhi Move Immediate High |.movhi

1] /26 25 1l /e [e s L UEEE R]
lopcode0x6| D | reserved | K |

| 6bits | 5bits | 5hits | 16 bits
For mat:
I .nmovhi rD, K
Description:

16-bit immediate is zero-extended, shifted left by 16 bits and placed into
general-purpose register rD.

32-bit Implementation:

rA[31: 0] <- extz(lmmediate) << 16
64-bit | mplementation:

rA[63:0] <- extz(lmediate) << 16
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 78 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.msync Memory Syncronization l.msync
A
| opcode 0x22000000 |
| 32 bits |
Format:
| . msync
Description:

Execution of memory synchronization instruction results in completion of
all load/store operations before the RISC core continues.

32-bit Implementation:

menor y-synchroni zati on

64-bit | mplementation:

menor y-synchroni zati on

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 79 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.mtspr Move To Special-Purpose Register [.mtspr

31| |[[[26[25]]..[21/20]. [[16[15 /L. [1L a0 L[-[1[1L o

opcodeOx10| K | A | B | K |

| 6bits | 5bits | 5bits | 5bits | 1lbits |
For mat:

| .mspr rArB, K

Description:

The contents of general-purpose register rB are moved into special register
identified by the sum of general-purpose register rA and zero-extended
immediate.

32-bit Implementation:
spr(rA+ext z(1 nmedi ate)) <- rA[31:0]
64-bit | mplementation:
spr(rA+extz(lmediate)) <- rA[31:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 80 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.mul Multiply Signed |.mul
1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0

opcode opcode opcode
‘ 0x38 ‘ D ‘ A ‘ B reserved 0x3 reserved X6

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:
l.mul rD,rArB
Description:

The contents of genera-purpose register rA and the contents of general-
purpose register rB are multiplied and the result is truncated to destination
register width and placed into general-purpose register rD. Both operands
are treated as unsigned integers.

32-bit Implementation:

rD[31: 0] <- rA[31:0] * rB[31:0]
SR OV] <- overflow

64-bit | mplementation:

r0f63:0] <- rA[63:0] * rB[63:0]
SR OV] <- overflow

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 81 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.muli Multiply Immediate Signed |.muli
3[]1J1[[26 251 [2220l - - a8 [E L LR R o]
opcodeOx2c| D | A | I |
| 6bits | 5bits | S5hits | 16 bits |
For mat:
[.muli rDrA I
Description:

Immediate and the contents of general-purpose register rA are multiplied
and the result is truncated to destination register width and placed into
general-purpose register rD.

32-bit Implementation:

rD[31:0] <- rA31:0] * Imediate
SR OV] <- overflow

64-bit | mplementation:

rD[63:0] <- rA[63:0] * Imediate
SR OV] <- overflow

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 82 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.mulu Multiply Unsigned |.mulu
1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0

opcode opcode opcode
‘ 0x38 ‘ D ‘ A ‘ B reserved 03 reserved Oxb

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:
|l .mulu rD,rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are multiplied and the result is truncated to destination
register width and placed into general-purpose register rD. Both operands
are treated as unsigned integers.

32-bit Implementation:

rD[31: 0] <- rA[31:0] * rB[31:0]
SR OV] <- overflow

64-bit | mplementation:

r0f63:0] <- rA[63:0] * rB[63:0]
SR OV] <- overflow

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 83 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.nop No Operation |.nop
YRR3R EE R DU R]
| opcode 0x15 | reserved |
[8hits | 24 bits |
Format:
| . nop
Description:

Thisinstruction does not do anything except it takes at least one clock
cycleto complete. It is often used to fill delay slot gaps.

32-bit Implementation:
64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 84 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.or Or |.or
1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0

opcode opcode opcode
‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved Oxd
| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits
Format:

l.or rDrArB

Description:

The contents of genera-purpose register rA are combined with the
contents of general-purpose register rB in abit-wise logical OR operation.
Theresult is placed into general-purpose register rD.

32-bit Implementation:

rD[31: 0] <- rA[31:0] OR rB[31:0]
64-bit | mplementation:

rD[63:0] <- rA[63:0] OR rB[63:0]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 85 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.ori Or with Immediate Half Word l.ori
32111111128 28] [/ 220 1 [26 (s R L UHEEEEEL o)
opcodeOx2a] D | A | K |
| 6bits | 5bits | S5hits | 16 bits |
Format:
l.ori rD,rAK
Description:

Immediate is zero-extended and combined with the contents of general-
purpose register rB in abit-wise logical OR operation. The result is placed
into general-purpose register rD.

32-bit Implementation:

rD[31: 0] <- rB[31:0] OR extz(lmediate)
64-bit | mplementation:

rD[63:0] <- rB[63:0] OR extz(lmediate)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 86 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.psync Pipeline Syncronization |.psync
A
| opcode 0x22800000 |
| 32 bits |
Format:
| . psync
Description:

Execution of pipeline synchronization instruction results in completion of
all instructions that were fetched before |.psync instruction. Once all
instructions are completed, instructions fetched after |.psync are flushed
from the pipeline and fetched again.

32-bit Implementation:

pi pel i ne-synchroni zati on
64-bit | mplementation:

pi pel i ne-synchroni zati on

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 87 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.rfe Return From Exception l.rfe
U8 25 LHER R EE R DU R]
‘opcode 0x9 | reserved |
| 6bits | 26 bits |
For mat:
l.rfe
Description:

Execution of thisinstruction restores the state of the processor prior to the
exception.

32-bit Implementation:

state restore()

64-bit | mplementation:

state_restore()

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 88 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.ror Rotate Right l.ror

3L.[]-[26[25].]: [|21 0] ||.[16/35 .. [-[1L[20 . [87[/L[[0
opcodeOx38| D | A | B |reserved|opcode 0x38|
| 6bits | 5bits | 5bits | 5bits [3bits | 8hits |

Format:
|l .ror rDrArB
Description:

General-purpose register rB specifies the number of bit positions the
contents of general-purpose register rA arerotated right. Result iswritten
into general-purpose register rD.

32-bit Implementation:

rDf31-rB: 0] <- rA[31l:rB]
rD[31:32-rB] <- rArB-1:0]

64-bit | mplementation:

rD[63-rB: 0] <- rA[63:rB]
rD[63:64-rB] <- rArB-1:0]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 89 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.rori Rotate Right with Immediate l.rori
3u[/[/[.]-[26/25] [[21[20][.[-[1635 [L[Jo [. [6/5L[-[0
opcodeOx2e| D | A | reserved |opcodeOx4| L |
| 6bits | 5bits | 5bits | 7bits | 3bits [6bits |
Format:

| .rori rDrA L

Description:

6-bit immediate specifies the number of bit positions the contents of
general-purpose register rA are rotated right. Result is written into
general-purpose register rD.

32-bit Implementation:

rDf 31-L:0] <- rA[31:L]
rD[31: 32-L] <- rA[L-1:0]

64-bit | mplementation:

rDf 63-L:0] <- rAl63:L]
rD[63:64-L] <- rA[L-1:0]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 90 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sb Store Byte |.sb
31 []-[26[25].]: [|21 [20]. ||| [1635][[-[1L[a0]. | [[L[][0
opcode 0x36 | | A | B | I |
| 6bits | 5bits | 5bits | 5bits | 1lbits |

For mat:
l.sb I(rA),rB
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The low-order 8 bits of
general-purpose register rB are stored to memory location addressed by
EA.

32-bit Implementation:

EA <- exts(Imediate) + rA[31:0]
(EA)[7:0] <- rB[7:0]

64-bit | mplementation:

EA <- exts(Imediate) + rA[63:0]
(EA)[7:0] <- rB[7:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 91 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sd Store Double Word |.sd

31 []-[26[25].]: [|21 [20]. ||| [1635][[-[1L[a0]. | [[L[][0
opcode 0x34 | | A | B | I |
| 6bits | 5bits | 5bits | 5bits | 1lbits |

For mat:
|.sd I(rA),rB
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The double word in general-
purpose register rB is stored to memory location addressed by EA.

32-bit Implementation:
N A

64-bit | mplementation:

EA <- exts(Imediate) + rA[63:0]
(EA)[63:0] <- rB[63:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBISSAI | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 92 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfeq Set Flag if Equal |.sfeq
A A s A s e T A
| Opcode0X720 | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |
Format:
|.sfeq rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared. If the two registers are equal, then the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] == rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] == rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 93 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfeqi Set Flag if Equal Immediate |.sfeqi
BURHHEER L 22 2o s s LHER LR L)
| opcodeOx5e0 | A | I |
| 1lbits | Shits | 16 bits |
For mat:
| .sfeqi rA I
Description:

The contents of general-purpose register rA and sign-extended immediate
are compared. If the two registers are equal, then the compare flag is set;
otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] == rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] == rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 94 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfges Set Flag if Greater or Equal Than Signed |.sfges

3 IR o s s e s R)
| opcodeOX72b | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |
Format:
| .sfges rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as signed integers. If the contents of the
first register are greater or equal than the contents of the second register,
then the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] >= rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] >= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 95 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater or Equal Than

|.sfgesi : : |.sfgesi
J |mmediate Signed J

L)L 21200] 26 a5 . | | . 17 JHELEEES)
| opcodeOx5eb | A |
| 11 bits | 5bits | 16 bits

Format:

| .sfgesi rA I
Description:

The contents of general-purpose register rA and sign-extended immediate
are compared as signed integers. If the contents of the first register are
greater or equal than the contents of the second register, then the compare
flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] >= rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] >= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pEencores.org Rev 0.1 Preliminary Draft 96 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater or Equal Than

|.sfgeu . |.sfgeu
J Unsigned J
B EEH LR Lo e s H s [LR EH o]
| opcodeOX723 | A | B | reserved
| 11 bits | 5bits | S5bits | 11 bits
Format:
| .sfgeu rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as unsigned integers. If the contents of
thefirst register are greater or equal than the contents of the second
register, then the compare flag is set; otherwise the compare flag is
cleared.

32-bit Implementation:

flag <- rA[31:0] >= rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] >= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 97 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater or Equal Than

|.sfgeu) . |.sfgeui
J |mmediate Unsigned J

1L ||| [2220].] .16 a5 | |]| 17 LHEEHER
| opcodeOx5e3 | A |
| 11 bits | 5bits | 16 bits

Format:

| .sfgeui rA I
Description:

The contents of general-purpose register rA and zero-extended immediate
are compared as unsigned integers. If the contents of the first register are
greater or equal than the contents of the second register, then the compare
flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] >= rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] >= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 98 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfgts Set Flag if Greater Than Signed |.sfgts

e e e A T
| opcodeOx72a | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |

Format:
| .sfgts rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as signed integers. If the contents of the
first register are greater than the contents of the second register, then the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] > rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] > rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 99 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater Than Immediate

|.sfgtsi : |.sfgtsi
J Signed J

L)L 21200] 26 a5 . | | . 17 JHELEEES)
| opcodeOx5ea | A |
| 11 bits | 5bits | 16 bits

Format:

| .sfgtsi rA I
Description:

The contents of general-purpose register rA and sign-extended immediate
are compared as signed integers. If the contents of the first register are
greater than the contents of the second register, then the compareflag is
set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] > rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] > rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 100 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfgtu Set Flag if Greater Than Unsigned |.sfgtu

3 IR o s s e s R)
| opcodeOX722 | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |
Format:
| .sfgtu rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as unsigned integers. If the contents of
thefirst register are greater than the contents of the second register, then
the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] > rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] > rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 101 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater Than Immediate

|.sfgtui : |.sfgtui
J Unsigned J

1L ||| [2220].] .16 a5 | |]| 17 LHEEHER
| opcodeOx5e2 | A |
| 11 bits | 5bits | 16 bits

For mat:

| .sfgtui rA I
Description:

The contents of general-purpose register rA and zero-extended immediate
are compared as unsigned integers. If the contents of the first register are
greater than the contents of the second register, then the compareflag is
set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] > rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] > rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 102 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfles Set Flagif Lessor Equal Than Signed |.sfles

3 IR o s s e s R)
| opcodeOx72d | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |
Format:
|.sfles rArB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as signed integers. If the contents of the
first register are less or equal than the contents of the second register, then
the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] <= rB[31:0]
64-bit | mplementation:

flag <- rA63:0] <= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 103 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

. Set Flag if Lessor Equal Than Immediate

|.sflesi |.sflesi
Signed

L1122 201 a8 s L 17 JEELEN el
| opcodeOx5ed | A |
| 11 bits | 5bits | 16 bits

Format:

| .sflesi rA I
Description:

The contents of general-purpose register rA and sign-extended immediate
are compared as signed integers. If the contents of the first register are less
or equal than the contents of the second register, then the compareflag is
set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] <= rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] <= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 104 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfleu Set Flag if Lessor Equal Than Unsigned |.sfleu

3 IR o s s e s R)
| opcodeOX725 | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |
Format:
|.sfleu rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as unsigned integers. If the contents of
thefirst register are less or equal than the contents of the second register,
then the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] <= rB[31:0]
64-bit | mplementation:

flag <- rA63:0] <= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 105 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Lessor Equal Than Immediate

|.sfleui . |.sfleui
Unsigned

1L ||| [2220].] .16 a5 | |]| 17 LHEEHER
| opcodeOX5¢5 | A |
| 11 bits | 5bits | 16 bits

For mat:

| .sfleui rA I
Description:

The contents of general-purpose register rA and zero-extended immediate
are compared as unsigned integers. If the contents of the first register are
less or equal than the contents of the second register, then the compare
flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] <= rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] <= rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 106 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sflts Set Flag if Less Than Signed |.sflts

e e e A T
| opcodeOx72c | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |

Format:
|.sflts rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as signed integers. If the contents of the
first register are less than the contents of the second register, then the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] < rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] < rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 107 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sflts Set Flag if Less Than Immediate Signed |.sfltsi

BURHHEER L 22 2o s s LHER LR L)
| opcodeOx5ec | A | I |
| 1lbits | Shits | 16 bits |
For mat:
[.sfltsi rA |l
Description:

The contents of general-purpose register rA and sign-extended immediate
are compared as signed integers. If the contents of the first register are less
than the contents of the second register, then the compare flag is st;
otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] < rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] < rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 108 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfltu Set Flag if Less Than Unsigned |.sfltu

e e e A T
| opcodeOX724 | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |

Format:
|.sfltu rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared as unsigned integers. If the contents of
the first register are less than the contents of the second register, then the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] < rB[31:0]
64-bit Implementation:

flag <- rA[63:0] < rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 109 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Less Than Immediate

|.sfltui : |.sfltui
Unsigned

3Ll L1 2r20 16 a5 | |- 17 LHEERE
| opcodeOx5e4 | A |
| 11 bits | 5bits | 16 bits

Format:

[.sfltui rAl
Description:

The contents of general-purpose register rA and zero-extended immediate
are compared as unsigned integers. If the contents of the first register are
less than the contents of the second register, then the compare flag is set;
otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] < rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] < rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 110 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfne Set Flag if Not Equal |.sfne
A A s A s e T A
| opcodeOX721 | A | B | reserved |
| 1lbits | 5bits [5bits | 1lbits |
Format:
|.sfne rA rB
Description:

The contents of general-purpose register rA and the contents of general-
purpose register rB are compared. If the two registers are not equal, then
the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] != rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] != rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 111 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sfnel Set Flag if Not Equal Immediate |.sfnei
BURHHEER L 22 2o s s LHER LR L)
| opcodeOx5el | A | I |
| 1lbits | Shits | 16 bits |
For mat:
| .sfnei rA I
Description:

The contents of general-purpose register rA and sign-extended immediate
are compared. If the two registers are not equal, then the compareflag is
set; otherwise the compare flag is cleared.

32-bit Implementation:

flag <- rA[31:0] != rB[31:0]
64-bit | mplementation:

flag <- rA[63:0] != rB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 112 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sh Store Half Word |.sh
31| |- [26/25]:]: |/ [22[20[.[.|- [16[25 /[\[12 0] . | L[} [0
opcode 0x37 | | A | B | I |
| 6bits | 5bits | 5bits | 5bits | 1lbits |

For mat:
l.sh I(rA),rB
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The low-order 16 bits of
general-purpose register rB are stored to memory |ocation addressed by
EA.

32-bit Implementation:

EA <- exts(Imediate) + rA[31:0]
(EA)[15:0] <- rB[15:0]

64-bit | mplementation:

EA <- exts(Imediate) + rA[63:0]
(EA)[15:0] <- rB[15:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 113 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.dl Shift Left Logical |.dl
31| |- |- [26[25[.[-].[2L[20]. . [16 15]][[az[10 [. [8[7[-]. .|][0
opcodeOx38) D | A | B |reserved| opcodeOx8 |
| 6bits | 5bits | 5bits [5bits | 3bits | Bhits |

For mat:

l.sll rDrArB

Description:

General-purpose register rB specifies the number of bit positions the
contents of general-purpose register rA are shifted left, inserting zeros into
the low-order bits. Result is written into general-purpose rD.

32-bit Implementation:

rD[31:rB] <- rA[31-rB:0]
rofrB-1:0] <- O

64-bit | mplementation:

rD[63:rB] <- rA[63-rB:0]
rofrB-1:0] <- O

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 114 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.dli Shift Left Logical with Immediate |.dlli
L] [/ [26/25].[.[[2[20][:[-[1625].[[.[.|-[ofe 1. &/5[L [0
opcodeOx2e| D | A | reserved |opcodeOX0| L |
| 6bits | 5bits | 5bits | 7bits | 3bits [6bits |
For mat:

| .slli rDrA L

Description:

6-bit immediate specifies the number of bit positions the contents of
general-purpose register rA are shifted left, inserting zeros into the low-
order bits. Result is written into general-purpose rD.

32-bit Implementation:

rDf31: L] <- rA[31-L:0]
rOfL-1:0] <- O

64-bit | mplementation:

rpf63: L] <- rAl63-L:0]
rDfL-1:0] <- O

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 115 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.sra Shift Right Arithmetic l.sra
3L[][-[28/25]. [[21[20[[1615][[-[rx[10 [.[8/7 [l L[o
opcodeOx38| D | A | B |reserved|opcode 0x28|

| 6bits | S5bhits | S5hits | 5bits | 3bits | 8hits |

Format:
| . srarDrATrB
Description:

General-purpose register rB specifies the number of bit positions the
contents of general-purpose register rA are shifted right, sign-extending
the high-order bits. Result is written into general-purpose register rD.

32-bit Implementation:

rDf31-rB: 0] <- rA[31l:rB]
rDf 31:32-rB] <- rB[31]

64-bit | mplementation:

rD[63-rB: 0] <- rA[63:rB]
rD[63: 64-rB] <- rB[63]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 116 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sral Shift Right Arithmetic with Immediate |.srai

a1[I[(26725 . 2120 [[[ss[ss [LLBR [[6BLL[[0

opcodeOx2e| D | A | reserved |opcodeOx2| L |

| 6bits | 5bits | 5bits | 7bits | 3bits [6bits |
For mat:

| .srai rDrA L

Description:
6-bit immediate specifies the number of bit positions the contents of

general-purpose register rA are shifted right, sign-extending the high-order
bits. Result is written into general-purpose register rD.

32-bit Implementation:

rDf 31-L:0] <- rA[31:L]
rD 31: 32-L] <- rAl 31]

64-bit | mplementation:

rOf63-L:0] <- rA63:L]
rD[63: 64-L] <- rAl63]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 117 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.srl Shift Right Logical |.srl
3L[][-[28/25]. [[21[20[[1615][[-[rx[10 [.[8/7 [l L[o
opcodeOx38| D | A | B |reserved|opcodeOx18|

| 6bits | S5bhits | S5hits | 5bits | 3bits | 8hits |

Format:
|l .srl rDrArB
Description:

General-purpose register rB specifies the number of bit positions the
contents of general-purpose register rA are shifted right, inserting zeros

into the high-order bits. Result is written into general-purpose register rD.

32-bit Implementation:

rDf31-rB: 0] <- rA[31l:rB]
rp[31:32-rB] <- 0

64-bit | mplementation:

rD[63-rB: 0] <- rA[63:rB]
rD[63:64-rB] <- 0

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 118 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

l.srli Shift Right Logical with Immediate |.sri
3u[/[/[.]-[26/25]. [[21[20][.[-[1635 [L[Jo [. [6/5L[-[0
opcodeOx2e| D | A | reserved |opcodeOxl| L |
| 6bits | 5bits | 5bits | 7bits | 3bits [6bits |
Format:

| .srli rDrA L

Description:

6-bit Immediate specifies the number of bit positions the contents of
general-purpose register rA are shifted right, inserting zeros into the high-
order bits. Result is written into general-purpose register rD.

32-bit Implementation:

rDf 31-L:0] <- rA[31:L]
rpf31:32-L] <- O

64-bit | mplementation:

rDf 63-L:0] <- rAl63:L]
rp[63:64-L] <- O

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 119 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sub Subtract Signed |.sub

1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved 0x2

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:

|.sub rD,rA rB

Description:
The contents of genera-purpose register rB is subtracted from the contents

of general-purpose register rA to form the result. The result is placed into
general-purpose register rD.

32-bit Implementation:
rD[31:0] <- rA[31:0] - rB[31:0]

SR CY] <- carry
SR OV] <- overflow

64-bit | mplementation:
rD[63:0] <- rA[63:0] - rB[63:0]

SR CY] <- carry
SR OV] <- overflow

Exceptions:

Range Exception

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 120 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sw Store SingleWord |.sw
31 []-[26[25].]: [|21 [20]. ||| [1635][[-[1L[a0]. | [[L[][0
opcode 0x35| | A | B | I |
| 6bits | 5bits | 5bits | 5bits | 1lbits |

Format:
l.swlil(rA),rB
Description:

Offset is sign-extended and added to the contents of general-purpose
register rA. Sum represents effective address. The low-order 32 bits of
general-purpose regi ster rB are stored to memory location addressed by
EA.

32-bit Implementation:

EA <- exts(Imediate) + rA[31:0]
(EA)[31:0] <- rB[31:0]

64-bit | mplementation:

EA <- exts(Imediate) + rA[63:0]
(EA)[31:0] <- rB[31:0]

Exceptions:

TLB mi ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 121 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.sys System Call |.sys
BUREHHEELEEERE s As U R]
| opcode 0x2000 | K |
| 16 bits | 16 bits |
For mat:
l.sys K
Description:

Execution of system call instruction results in the system call exception.
System calls exception is arequest to the operating system to provide
operating system services. Immediate specifies which system serviceis
required.

32-bit Implementation:
system cal | - excepti on(K)

64-bit | mplementation:

system cal | - excepti on(K)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 122 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.xor Exclusve Or |.xor

1) [[2625].][22 /20].|. | 6 [25]. [[.[12/10 [.[8[7 [6[s [43 .[.[0
opcode opcode opcode

‘ 0x38 ‘ D ‘ A ‘ B reserved OxO reserved 05

| 6bits | 5hits | 5hits | 5hits | 3hbits | 2bits | 2hits | 4hbits

Format:

| . xor rD,rA rB

Description:

The contents of genera-purpose register rA are combined with the
contents of genera-purpose register rB in abit-wise logical XOR
operation. The result is placed into general-purpose register rD.

32-bit Implementation:

rD[31: 0] <- rA[31:0] XOR rB[31: 0]
64-bit | mplementation:

rD[63:0] <- rA[63:0] XOR rB[63:0]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 123 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

|.xori Exclusve Or with Immediate Half Word |.xori

3L [[[][26[25]. - /22 [20[: /[a6 a5 L [[o]
opcodeOx2b| D | A | I |
| 6bits | 5bits | S5hits | 16 bits |

Format:
| .xori rDrA I
Description:

Immediate is zero-extended and combined with the contents of general-
purpose register rB in abit-wise logical XOR operation. Theresult is
placed into general-purpose register rD.

32-bit Implementation:

rD[31: 0] <- rB[31:0] XOR exts(|nmediate)
64-bit | mplementation:

rD63: 0] <- rB[63:0] XOR exts(|mediate)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORBIS32I | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 124 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

If.add.d Add Floating-Point Double-Precision If.add.d

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
opcodeOxc| D | A | B reserved opcode 0x10|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
|f.add.d rD,rA rB
Description:

The contents of vector/floating-point register virA is added to the contents
of vector/floating-point register virB to form the result. Theresult is
placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[63:0] <- virA63:0] + vfrB[63:0]

Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 125 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

If.add.s Add Floating-Point Single-Precison |f.add.s

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxb| D | A | B reserved opcode 0x10|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
If.add.s rD,rA rB
Description:

The contents of vector/floating-point register virA is added to the contents
of vector/floating-point register virB to form the result. Theresult is
placed into vector/floating-point register vrD.

32-bit Implementation:
virD[31: 0] <- virA31:0] + vfrB[31:0]

64-bit | mplementation:
Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 126 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORFPX64 Custom

If.custl.d : If.custl.d
Instructions

e A A E A e A

opcode OxC | reserved lopcode Oxe [reserved

| 6bits | 18 hits | 4bits | 4bits
Format:

[f.custl.d

Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORFPX641l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 127 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for ORFPX32 Custom

If.custl.s . If.custl.s
Instructions

e A A E A e A

' opcode Oxb | reserved lopcode Oxe [reserved

| 6bits | 18 hits | 4bits | 4bits
Format:

[f.custl.s

Description:

This fake instruction only allocates instruction set space for custom
ingtructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORFPX321l | Optiona |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 128 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

If.div.d Divide Floating-Point Double-Precision If.div.d

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxc| D | A | B reserved opcode 0x13|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
[f.div.d rD,rArB
Description:

The contents of vector/floating-point register vfrA is divided by the
contents of vector/floating-point register virB to form the result. The result
is placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD[63:0] <- virA63:0] / vfrB[63:0]

Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX641l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 129 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

If.div.s Divide Floating-Point Single-Precision If.div.s

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxb| D | A | B reserved opcode 0x13|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
If.div.s rD,rArB
Description:

The contents of vector/floating-point register vfrA is divided by the
contents of vector/floating-point register virB to form the result. The result
is placed into vector/floating-point register virD.

32-bit Implementation:
virD[31: 0] <- virA31:0] / vfrB[31:0]

64-bit | mplementation:
Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 130 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Floating-Point Double-Precision To

|f.ftoi.d If.ftoi.d
| nteger
31|/l /28/25.|.|.[21/20[. | [16 a5 || [11[10 [.[8[7[.[..[/[[o]
lopcodeOxc| D | A | B reserved opcode Ox15

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
If.ftoi.d rDrA
Description:

The contents of vector/floating-point register virA are converted to integer
and stored into general-purpose register rD.

32-bit Implementation:
64-bit | mplementation:

rp[63:0] <- ftoi(vfrA 63:0])
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 131 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Floating-Point Single-Precision To

If.ftoi.s If.ftoi.s
| nteger
31|/l /28125, [21/20[.. | [16 a5 || [11[10 [.[8/7[.[. .|/l [o]
lopcodeOxb| D | A | B |reserved opcode 0x15

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
If.ftoi.s rD,rA
Description:

The contents of vector/floating-point register virA are converted to integer
and stored into general-purpose register rD.

32-bit Implementation:
rD[31:0] <- ftoi(vfrA[31:0])

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 132 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Integer To Floating-Point Double-

If.itof.d S If.itof.d
Precision
31|/l /28/25.|.|.[21/20[. | [16 a5 || [11[10 [.[8[7[.[..[/[[o]
lopcodeOxc| D | A | B |reserved opcode Ox14

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
If.itof.d rD,rA
Description:

The contents of general-purpose register rA are converted to Double-
precision floating-point number and stored into vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

virp[63:0] <- itof(rA[63:0])
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.Opencores.org Rev 0.1 Preliminary Draft 133 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Integer To Floating-Point Single-

If.itof.s . If.itof.s
Precision
31|/l /28125, [21/20[. | [16 a5 || [1[10 .87 [.[. .|/l [o]
lopcodeOxb| D | A | B |reserved jopcode Ox14

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.itof.s rD, rA

Description:

The contents of general-purpose register rA are converted to single-
precision floating-point number and stored into vector/floating-point
register virD.

32-bit Implementation:
virD[31: 0] <- itof(rA[31:0])

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 134 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Multiply and Add Floating-Point

If.madd.d . If.madd.d
Double-Precision
3. [:[-[26/25]. .. =2L[20]..[26 15]:[-|. [11[20 [. [87[-[:[]]\ \[o]
lopcodeOxc| D | A | B reserved opcode Ox17
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.madd.d rD,rA rB

Description:

The contents of vector/floating-point register virA is multiplied by the
contents of vector/floating-point register vfrB and added to special-
purpose register FPMADDL O/FPMADDHI.

32-bit Implementation:
64-bit | mplementation:

FPMADDHI [31: 0] FPMADDLQ[31: 0] <- vfrA[63:0] *
vfrB[63: 0] + FPMADDHI [31: 0] FPMADDLQ] 31: 0]

Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX641l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 135 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Multiply and Add Floating-Point

If.madd.s . .. If.madd.s
Single-Precision
31| |26 25|/ -[2t[20[.|. | [16[15[.[.[[11/20 [.[8 7] L[|
lopcodeOxb| D | A | B reserved opcode Ox17
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.madd.s rD,rA rB

Description:

The contents of vector/floating-point register virA is multiplied by the
contents of vector/floating-point register vfrB and added to special-
purpose register FPMADDL O/FPMADDHI.

32-bit Implementation:

FPMADDHI [31: 0] FPMADDLQ[31: 0] <- vfrA[31:0] *
vfrB[31:0] + FPMADDHI [31: 0] FPMADDLQ[31: 0]

64-bit | mplementation:
Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX321l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 136 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Multiply Floating-Point Double-

If.mul.d 2. If.mul.d
Precision
3. [:[-[26/25]. .. =2L[20]..[26 15]:[-|. [11[20 [. [87[-[:[]]\ \[o]
lopcodeOxc| D | A | B reserved opcode Ox12
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
If.mul.d rD,rArB
Description:

The contents of vector/floating-point register virA is multiplied by the
contents of vector/floating-point register virB to form the result. The result
is placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD[63:0] <- virA63:0] * vfrB[63:0]

Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 137 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Multiply Floating-Point Single-

If.mul.s o If.mul.s
Precision
3. [:[-[26/25]. .. =2L[20]..[26 15]:[-|. [11[20 [. [87[-[:[]]\ \[o]
lopcodeOxb| D | A | B reserved opcode Ox12
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.mul.s rD,rArB

Description:

The contents of vector/floating-point register virA is multiplied by the
contents of vector/floating-point register virB to form the result. The result
is placed into vector/floating-point register virD.

32-bit Implementation:
virD[31: 0] <- vifrA[31:0] * vfrB[31:0]

64-bit | mplementation:
Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 138 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Remainder Floating-Point Double-

If.rem.d 3 If.rem.d
Precision
31,2625 .| =2L[20]..[26 15]:[-|. [11[20 [. [87[-[:[] 1. \[o]
lopcodeOxc| D | A | B reserved opcode Ox16
| 6bits | 5hits | 5hits | 5hits | 3hits | 8hits

Format:
If.remd rDrATrB
Description:

The contents of vector/floating-point register vfrA isdivided by the
contents of vector/floating-point register virB and remainder is used as the
result. The result is placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA63:0] % vfrB[63:0]

Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX641l | Optiona |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 139 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Remainder Floating-Point Single-

If.rem.s - If.rem.s
Precision
31,2625 .| =2L[20]..[26 15]:[-|. [11[20 [. [87[-[:[] 1. \[o]
lopcodeOxb| D | A | B reserved opcode Ox16
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.rems rD,rArB

Description:

The contents of vector/floating-point register vfrA is divided by the
contents of vector/floating-point register virB and remainder is used as the
result. The result is placed into vector/floating-point register virD.

32-bit Implementation:
virD[31: 0] <- virA31:0] % vfrB[31: 0]

64-bit | mplementation:
Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX321l | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 140 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Equal Floating-Point

If.sfeq.d . |If.sfeq.d
. Double-Precision .
31|/ /28125, [21/20[. | [16 a5 [. [[1[10 .87 [.[.[..[/[[o]
lopcodeOxc | reserved | A | B reserved opcode Ox18
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
If.sfeq.d rArB
Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If the two registers are

equal, then the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[63:0] == vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 141 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Equal Floating-Point Single-

If.sfeq.s . If.sfeq.s
. Precision .
31|/l /28/25.|.|.[21/20[. | [16 a5 || [1[10 .87 [.[..[/[[o]
lopcodeOxb | reserved | A | B reserved opcode Ox18
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sfeg.s rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If the two registers are
equal, then the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:
flag <- vfrA[31:0] == vfrB[31: 0]

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Prelimi nary Draft 142 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater or Equal Than

If.sfge.d) : . If.sfge.d
J Floating-Point Double-Precision J
31|/l /28125, [21/20[. | [16 a5 || [11[10 .87 [.[.[.|/l [o]
lopcodeOxc | reserved | A | B reserved opcode Ox1b

| 6bits | 5bits | 5hits | 5hits | 3hbits | 8hits

Format:

If.sfge.d rA rB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register is greater
or equal than the second register, then the compare flag is set; otherwise
the compare flag is cleared.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[63:0] >= vfrB[63: 0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 143 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater or Equal Than

If.sfge.s : o . If.sfge.s
J Floating-Point Single-Precision J
31]:[[[[26[25[(|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxb | reserved | A | B reserved opcode Ox1b

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sfge.s rA rB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register is greater
or equal than the second register, then the compare flag is set; otherwise
the compare flag is cleared.

32-bit Implementation:
flag <- vfrA[31:0] >= vfrB[31:0]

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 144 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater Than Floating-Point

If.sfgt.d .y f.sfgt.d
J Double-Precision J
31|/l /28125, [21/20[| [16 a5 [.|[11[10 [.[87[.[..[/l[o]
‘opcodeOxc | reserved | A | B |reserved jopcode Ox1la

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

[f.sfgt.d rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register is greater
than second register, then the compare flag is set; otherwise the compare
flag is cleared.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[63:0] > vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 145 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Greater Than Floating-Point

If.sfgt.s : . If.sfgt.s
J Single-Precision J
31|/l /28125, [21/20[| [16 a5 [. | [11[10 [.[87[.[.[.|/l [o]
‘opcodeOxb | reserved | A | B reserved jopcode Ox1la

| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sfgt.s rA rB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register is greater
than second register, then the compare flag is set; otherwise the compare
flag is cleared.

32-bit Implementation:
flag <- vfrA[31:0] > vfrB[31l:0]

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 146 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Lessor Equal Than Floating-

If.sfle.d . g If.sfle.d
Point Double-Precision
31|/l /28/25.|.|.21/20[| [16 a5 || [11[10 [.[8[7[.[. .|/ [0
‘opcodeOxc | reserved | A | B |reserved jopcode Ox1d
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sfle.d rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register isless or
equal than the second register, then the compare flag is set; otherwise the
compareflag is cleared.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[363:0] <= vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 147 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Lessor Equal Than Floating-

If.sfle.s o . If.sfle.s
Point Single-Precision
31| |26 25| -[2t[20[.|. | [16[15[.[.[. /1220 [.[8 7] L[|}
lopcodeOxb | reserved | A | B |reserved jopcode Ox1d
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sfle.s rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register isless or
equal than the second register, then the compare flag is set; otherwise the
compare flag is cleared.

32-bit Implementation:
flag <- vfrA[31:0] <= vfrB[31:0]

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pPencores.org Rev 0.1 Preliminary Draft 148 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Less Than Floating-Point

If.sflt.d . |f.sflt.d
Double-Precision
31|/l /28125, [21/20[| [16 a5 [.|[11[10 [.[87[.[..[/l[o]
lopcodeOxc | reserved | A | B |reserved jopcode Ox1c
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sflt.d rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register isless
than second register, then the compare flag is set; otherwise the compare
flag is cleared.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[63:0] < vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 149 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Less Than Floating-Point

If.sflt.s . . If.sflt.s
Single-Precision
31|/l /28125, [21/20[| [16 a5 [. | [11[10 [.[87[.[.[.|/l [o]
lopcodeOxb | reserved | A | B |reserved jopcode Ox1c
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sflt.s rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If first register isless
than second register, then the compare flag is set; otherwise the compare
flag is cleared.

32-bit Implementation:
flag <- vfrA[31:0] < vfrB[31l:0]

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0OPEeNCores.org Rev 0.1 Preliminary Draft 150 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Not Equal Floating-Point

If.sfne.d . If.sfne.d
Double-Precision
31|/ /28125, [21/20[. | [16 a5 [. [[1[10 .87 [.[.[..[/[[o]
lopcodeOxc | reserved | A | B reserved opcode Ox19
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
If.sfne.d rArB
Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If the two registers are
not equal, then the compare flag is set; otherwise the compare flag is
cleared.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[63:0] != vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 151 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Set Flag if Not Equal Floating-Point

If.sfne.s : . If.sfne.s
Single-Precision
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
lopcodeOxb | reserved | A | B reserved opcode Ox19
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

If.sfne.s rArB

Description:

The contents of vector/floating-point register virA and the contents of
vector/floating-point register virB are compared. If the two registers are
not equal, then the compare flag is set; otherwise the compare flag is
cleared.

32-bit Implementation:
flag <- vfrA[31:0] != vfrB[31:0]

64-bit | mplementation:
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 152 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Subtract Floating-Point Double-

If.sub.d A If.sub.d
Precision
31|/l /28/25.|.|.[21/20[. | [16 a5 || [11[10 [.[8[7[.[..[/[[o]
lopcodeOxc| D | A | B reserved opcode Ox11
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:
| f.sub.d rD,rArB
Description:

The contents of vector/floating-point register virB is subtracted from the
contents of vector/floating-point register virA to form the result. The
result is placed into vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA63:0] - vfrB[63:0]

Exceptions:
Notes:

Instruction Class\lmplementation‘
| ORFPX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 153 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

If.sub.s Subtract Floating-Point Single-Precision If.sub.s

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxb| D | A | B reserved opcode Ox11|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
| f.sub.s rD,rArB
Description:

The contents of vector/floating-point register virB is subtracted from the
contents of vector/floating-point register virA to form the result. The
result is placed into vector/floating-point register vfrD.

32-bit Implementation:
virD[31:0] <- virA[31:0] - vfrB[31:0]

64-bit | mplementation:
Exceptions:
Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 154 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Ivf.ld Load Vector/Floating-Point Double Word Ivf.ld

NN = A A A A A A A
lopcodeOxd| D | A || reserved |opcode0xO |
| 6bits | 5bits | 5bits [8hbits | 8hits

For mat:
Ivf.ld rD 0(rA)
Description:

The contents of vector/floating-point register virA is used as effective
address. The double word in memory addressed by EA isloaded into
vector/floating-point register vfrD.

32-bit Implementation:
N A

64-bit | mplementation:

EA <- vfirA[63:0]
r0 63:0] <- (EA)[63:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 155 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Ivf.lw Load Vector/Floating-Point SingleWord [vf.lw

NN = A A A A A A A
lopcodeOxd| D | A || reserved |opcodeOxl
| 6bits | 5bits | 5bits [8hbits | 8hits

Format:
[vf.lwrD, 0(rA)
Description:

The contents of vector/floating-point register virA is used as effective
address. The double word in memory addressed by EA isloaded into
vector/floating-point register vfrD.

32-bit Implementation:

EA <- vfrA[31:0]
rD[31: 0] <- (EA)[31:0]

64-bit | mplementation:

EA <- vfrA[31:0]
rD[31: 0] <- (EA)[31:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 156 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Ivf.sd Store Vector/Floating-Point Double Word Ivf.sd

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxd | reserved | A | B reserved opcode 0x10|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
lvf.sd O(rA),rB
Description:

The contents of vector/floating-point register virA is used as effective
address. The double word in vector/floating-point register vrfB is stored to
memory location addresses by EA.

32-bit Implementation:
N A

64-bit | mplementation:

EA <- vfirA[63:0]
r0 63:0] <- (EA)[63:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORFPX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 157 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Ivf.sw Store Vector/Floating-Point SingleWord Ivf.sw

31]:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxd | reserved | A | B [reserved opcode Ox11|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
lvf.sw O(rA),rB
Description:

The contents of vector/floating-point register virA is used as effective
address. The single word in vector/floating-point register vrfB is stored to
memory location addresses by EA.

32-bit Implementation:

EA <- virA[31:0]
rD[31: 0] <- (EA)[31:0]

64-bit | mplementation:

EA <- vfrA[31:0]
rD[31: 0] <- (EA)[31:0]

Exceptions:

TLB m ss
Page fault
Bus error

Notes:

Instruction Class | Implementation ‘
| ORFPX321 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 158 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.add.b Vector Byte Elements Add Signed Iv.add.b

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A | B reserved opcode 0x30|
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:

lv.add.b rD,rA rB

Description:

The byte elements of vector/floating-point register virA are added to the
byte elements of vector/floating-point register virB to form the result
elements. Result elements are placed into vector/floating-point register
virD.

32-bit | mplementation:
64-bit | mplementation:
virD[7:0] <- vfrA[7:0] + virB[7:0]

virD[15: 8] <- vfirAl 15:8] + vfrB[15: §]
virD[23: 16] <- vfrA[23:16] + vfrB[23: 16]

virD[31: 24] <- vfrA[31:24] + vfrB[31l: 24]
virD[39: 32] <- vfrA[39:32] + vfrB[39:32]
virD[47:40] <- virA[47:40] + vfrB[47:40]
vfrD[55: 48] <- vfrA[55:48] + vfrB[55:48]
virD[63: 56] <- vfrA[63:56] + vfrB[63:56]
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 159 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Add

lv.add.h : lv.add.h
Signed
31|/l /28125, [21/20[. | [16 a5 [. | [11[10 .87 [.[. .|/l [o]
lopcodeOxa| D | A | B reserved opcode Ox31
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.add.h rD,rA rB

Description:

The half-word elements of vector/floating-point register virA are added to
the half-word elements of vector/floating-point register virB to form the
result elements. Result elements are placed into vector/floating-point
register virD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- vfrAl 15:0] + vfrB[15: 0]
virD[31:16] <- vfrA[31l:16] + vfrB[31l: 16]

virD[47:32] <- virA[47:32] + vfrB[47:32]
virD[63: 48] <- vfrA[63:48] + vfrB[63:48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0Pencores.org Rev 0.1 Preliminary Draft 160 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Add Signed

lv.adds.b lv.adds.b
Saturated
3. [:[-[26/25]. .. =2L[20]..[26 15]:[-|. [11[20 [. [87[-[:[]]\ \[o]
lopcodeOxa| D | A | B reserved opcode 0x32
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.adds.b rD,rA rB

Description:

The byte elements of vector/floating-point register virA are added to the
byte elements of vector/floating-point register virB to form the result
elements. If the result exceeds min/max value for the destination data type,
it is saturated to min/max value and placed into vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:
virD[7:0] <- sat8s(vfrA[7:0] + vfrB[7:0])

virD[15: 8] <- sat8s(vfrA[15:8] + vfrB[15:8])
virD[23: 16] <- sat8s(vfrA[23:16] + vfrB[23:16])

virD[31: 24] <- sat8s(vfrA[31:24] + virB[31l:24])
virD 39: 32] <- sat8s(vfrA[39:32] + vfrB[39:32])
virD[47: 40] <- sat8s(vfirA[47:40] + virB[47:40])
vfrD[55: 48] <- sat8s(vfrA[55:48] + vfrB[55:48])
virD 63: 56] <- sat8s(vfrA[63:56] + vfrB[63:56])
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 161 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Add
lv.adds.h Signed Satur ated lv.adds.h

31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[11220 [.[8 7] L[|
opcodeOxa| D | A | B reserved opcode 0x33
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.adds.h rD,rA rB

Description:

The half-word elements of vector/floati ng-point register virA are added to
the half-word elements of vector/floating-point register virB to form the
result elements. If the result exceeds min/max value for the destination
datatype, it is saturated to min/max value and placed into vector/floati ng-
point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- satl6s(vfrA[15:0] + vfrB[15:0])
virD 31: 16] <- satl6s(vfrA[31:16] + vfrB[31l:16])

virD[47: 32] <- satl16s(vfrA[47:32] + virB[47:32])
virD[63: 48] <- sat16s(vfrA[63:48] + virB[63:48])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 162 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Add

lv.addu.b . lv.addu.b
Unsigned
31|/l /28125, [21/20[. | [16 a5 [. | [11[10 .87 [.[. .|/l [o]
lopcodeOxa| D | A | B |reserved opcode Ox34
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.addu.b rD,rA rB

Description:

The unsigned byte elements of vector/floating-point register vfrA are
added to the unsigned byte elements of vector/floating-point register virB
to form the result elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:
virD[7:0] <- vfrA[7:0] + virB[7:0]

virD[15:8] <- vfrA[15:8] + vfrB[15: 8]
virD[23: 16] <- vfrA[23:16] + vfrB[23:16]

virD[31: 24] <- vfrA[31:24] + vfrB[31l: 24]
virD[39: 32] <- vfrA[39:32] + vfrB[39: 32]
virD[47:40] <- virA[47:40] + vfrB[47:40]
virD[55: 48] <- vfrA[55:48] + vfrB[55:48]
virD[63: 56] <- vfrA[63:56] + vfrB[63:56]
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 163 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Add

lv.addu.h : lv.addu.h
Unsigned
31|/l /28125, [21/20[.. | [16 a5 || [11[10 .87 [.[..[/[[o]
lopcodeOxa| D | A | B reserved opcode 0x35
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.addu.h rD,rA rB

Description:

The unsigned half-word elements of vector/floating-point register virA are
added to the unsigned half-word elements of vector/floating-point register
vfrB to form the result elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- vfrAl 15:0] + vfrB[15: 0]
virD[31:16] <- vfrA[31l:16] + vfrB[31l: 16]

virD[47:32] <- virA[47:32] + vfrB[47:32]
virD[63: 48] <- vfrA[63:48] + vfrB[63:48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 164 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Add

lv.addus.b . lv.addus.b
Unsigned Saturated
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[11220 [.[8 7] L[|
opcodeOxa| D | A | B reserved opcode 0x36
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.addus.b rD, rA rB

Description:

The unsigned byte elements of vector/floating-point register vfrA are
added to the unsigned byte elements of vector/floating-point register virB
to form the result elements. If the result exceeds min/max value for the
destination data type, it is saturated to min/max value and placed into
vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:
virD[7:0] <- sat8u(vfrA[7:0] + vfrB[7:0])

virD[15: 8] <- sat8u(vfrA[15:8] + vfrB[15:8])
virD[23: 16] <- sat8u(vfrAl23:16] + vfrB[23:16])

virD[31: 24] <- sat8u(vfrA[31:24] + virB[31l:24])
virD 39:32] <- sat8u(vfrA[39:32] + vfirB[39:32])
virD[47: 40] <- sat8u(vfrA[47:40] + virB[47:40])
vfrD[55: 48] <- sat8u(vfrA[55:48] + vfrB[55:48])
virD 63: 56] <- sat8u(vfrA[63:56] + vfrB[63:56])
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 165 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Add
lv.addus.h Unsigned Saturated lv.addus.h

31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
lopcodeOxa| D | A | B reserved opcode 0x37
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.addus.h rD, rA rB

Description:

The unsigned half-word elements of vector/floating-point register virA are
added to the unsigned half-word elements of vector/floating-point register
virB to form the result elements. If the result exceeds min/max value for
the destination data type, it is saturated to min/max value and placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- satl6s(vfrA[15:0] + vfrB[15:0])
virD 31: 16] <- satl6s(vfrA[31:16] + vfrB[31l:16])

virD[47: 32] <- satl16s(vfrA[47:32] + virB[47:32])
virD[63: 48] <- satl16s(vfrA[63:48] + virB[63:48])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 166 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.all_ eq.b Vector Byte Elements All Equal Iv.all eg.b

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15[t |[. [8[7: R
B |reserved opcode 0x10|
Sbits | 3bits [8bits |

Format:

Iv.all _eq.b rD,rArB

Description:

All byte elements of vector/floati ng-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
al corresponding elements are equal; otherwise compare flag is cleared.
Compare flag isreplicated into all bit positions of vector/floati ng-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- virA[7:0] == vfrB[7:0]

virAl 15: 8] == vfrB[15: 8]

virAl 23: 16] == vfrB[23: 16]

vir Al 31: 24] == vfrB[31: 24]

virA[39: 32] == vfrB[39: 32]

virA[47: 40] == vfirB[47: 40]

vfrA[55: 48] == vfrB[55: 48]

virA 63: 56] == vfrB[63:56]vfrD 63:0] <-
repl (flag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 167 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements All

lv.all_eq.h lv.all_eq.h
- Equal -
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
opcodeOxa| D | A | B reserved opcode Ox11
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all _eq.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
issetif al corresponding elements are equal; otherwise compareflagis
cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:
flag <- vfrA[15:0] == vfrB[15: 0]
vir A 31: 16] == vfrB[31: 16]
virA[47: 32] == virB[47: 32]
vir A 63: 48] == vfrB[63:48]vfrD 63: 0] <-
repl (flag)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 168 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Greater

lv.all_geb lv.all_geb
-9 or Equal Than -9
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
lopcodeOxa| D | A | B reserved opcode Ox12
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all _ge.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
al elements of virA are greater or equal than elements of vfrB;otherwise
compare flag is cleared.

Compareflagisreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- virA[7:0] >= vfrB[7:0]

virAl 15: 8] >= virB[15: 8]

virAl 23: 16] >= vfrB[23: 16]

vir Al 31: 24] >= vfrB[31: 24]

virA[39: 32] >= vfrB[39: 32]

vir Al 47: 40] >= virB[47: 40]

vfrA[55: 48] >= vfrB[55: 48]

virA 63: 56] >= vfrB[63:56]vfrD 63:0] <-
repl (flag)

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 169 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Greater

Iv.all_geb or Equal Than

lv.all _geb

1 25 25 . 20 e sl a0 (s L
lopcodeOxa| D | A | B reserved opcode Ox12
| 6bits | 5hits | 5hits | 5hits | 3bits | 8bits

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 170 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements All

lv.all_geh lv.all_geh
-9 Greater or Equal Than -9
31]:[[[[26[25[(|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A | B reserved opcode Ox13
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all _ge.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
issetif all elements of virA are greater or equal than elements of
vfrB;otherwise compare flag is cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:
flag <- vfrA[15:0] >= vfrB[15: 0]
virA[31: 16] >= vfrB[31: 16]
virA[47: 32] >= virB[47: 32]
vir A 63: 48] >= vfrB[63:48]vfrD 63: 0] <-
repl (flag)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 171 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Greater

lv.all_gt.b lv.all_gt.b
4 Than -
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[11220 [.[8 7] L[|
opcodeOxa| D | A | B |reserved opcode Ox14
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all _gt.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
all elements of vfrA are greater than elements of vfrB;otherwise compare
flag is cleared.

Compare flag isreplicated into al bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] > virB[7:0]
virA[15: 8] > vfrB[15: 8]

virAl 23: 16] > vfrB[23: 16]

virA[31: 24] > vfrB[31: 24]

virA[39: 32] > vfrB[39: 32]

vir Al 47: 40] > vfrB[47: 40]

vir Al 55: 48] > vfrB[55: 48]

virA[63:56] > virB[63:56]virD 63:0] <- repl (flag)

Exceptions:
None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 172 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Greater

Iv.al_gt.b Than

Iv.all_gt.b

1 25 25 . 20 e sl a0 (s L
opcodeOxa| D | A | B |reserved opcode Ox14
| 6bits | 5hits | 5hits | 5hits | 3bits | 8bits

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 173 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements All

lv.al_gt.h lv.al_gt.h
- Greater Than 4
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
opcodeOxa| D | A | B reserved opcode Ox15
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all _gt.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
issetif al elements of vfrA are greater than elements of vfrB;otherwise
compare flag is cleared.

Compareflag isreplicated into al bit positions of vector/floating-point
register virD.

32-bit Implementation:

64-bit | mplementation:
flag <- vfrA[15:0] > vfrB[15:0]
virA 31:16] > vfrB[31: 16]

virA[47:32] > virB[47: 32]
virA[63:48] > virB[63:48]virD 63:0] <- repl (flag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 174 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Lessor

lv.all_leb lv.all_leb
- Equal Than -
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[11220 [.[8 7] L[|
opcodeOxa| D | A | B reserved opcode Ox16
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.all le.b rDrA B

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
al elements of vfrA areless or equal than elements of virB;otherwise
compare flag is cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- virA[7:0] <= vfrB[7:0]

virAl 15: 8] <= vfrB[15: 8]

virAl 23: 16] <= vfrB[23: 16]

vir Al 31: 24] <= vfrB[31: 24]

virA[39: 32] <= vfrB[39: 32]

virA[47: 40] <= virB[47: 40]

vfrA[55: 48] <= vfrB[55: 48]

virA 63: 56] <= vfrB[63:56]vfrD 63:0] <-
repl (flag)

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 175 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Lessor

Ivall_leb Equal Than

Ivall_leb

1 25 25 . 20 e sl a0 (s L
opcodeOxa| D | A | B reserved opcode Ox16
| 6bits | 5hits | 5bits | 5hits | 3bits | 8bits

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 176 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements All
lv.all le.h L essor Equal Than lv.all le.h

31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
lopcodeOxa| D | A | B reserved opcode Ox17
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all le.h rDrA B

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
issetif al elements of virA areless or equal than elements of
vfrB;otherwise compare flag is cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:
flag <- vfrA[15:0] ,= vfrB[15: 0]
vir A 31: 16] <= vfrB[31: 16]
virA[47: 32] <= virB[47: 32]
vir A 63: 48] <= vfrB[63:48]vfrD 63:0] <-
repl (flag)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 177 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.all_It.b Vector Byte Elements All Less Than Iv.all _It.b

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15[t |[. [8[7: R
B |reserved opcode 0x18
Sbits | 3bits [8bits |

Format:

Iv.all It.b rDrATrB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
all elements of virA are less than elements of vfrB;otherwise compare flag
iscleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] < vfirB[7:0]
virA[15: 8] < vfrB[15: 8]

virAl 23: 16] < vfrB[23:16]

virAl 31: 24] < vfrB[31: 24]

virAl 39: 32] < vfrB[39: 32]

vir Al 47: 40] < vfrB[47:40]

vfr Al 55: 48] < vfrB[55:48]

virA[63:56] < virB[63:56]vfrD[63:0] <- repl (flag)
Exceptions:

None
Notes:

Ingtruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 178 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements All

lv.all_lt.h lv.all_lt.h
- Less Than -
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
opcodeOxa| D | A | B reserved opcode Ox19
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all It.h rDrATrB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
issetif all elements of virA are less than elements of virB;otherwise
compare flag is cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:

64-bit | mplementation:
flag <- vfrA[15:0] < vfrB[15:0]
virA 31: 16] < vfrB[31: 16]

virA[47: 32] < virB[47: 32]
virA[63:48] < virB[63:48]virD 63:0] <- repl (flag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 179 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Not

lv.all_neb lv.all_neb
- Equal -
31| |26 [25]]|[-[2t[20[.|. | [16[15].[.[. 11120 [[8 7] L[|
opcodeOxa| D | A | B |reserved opcode Oxla
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all ne.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
al corresponding elements are not equal; otherwise compareflag is
cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- virA[7:0] !'= vfrB[7:0]
virA[15: 8] !'= vfrB[15: 8]

virA[23:16] !'= vfrB[23: 16]
vir Al 31: 24] = vfrB[31: 24]
virA[39: 32] !'= vfrB[39: 32]
virA[47:40] '= virB[47: 40]
virA[55:48] != vfrB[55: 48]
virA[63:56] != vfrB[63:56]vfrD 63:0] <-
repl (flag)
Exceptions:
None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 180 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements All Not

lv.all_neb Equal

lv.all neb

1 25 25 - 200 e sl a0 (s
opcodeOxa| D | A | B |reserved opcode Oxla
| 6bits | 5hits | 5hits | 5hits | 3bits | 8bits

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 181 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements All

lv.all_ne.h lv.all_ne.h
- Not Equal -
31]:[[[-[26[25[[2220/l [-[16[15[. [iz a0 [.[8[7[-[[[[0
lopcodeOxa| D | A | B reserved opcode Ox1b
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Iv.all ne.h rD,rA TrB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
isset if al corresponding elements are not equal; otherwise compare flag
iscleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:
flag <- vfrA[15:0] != vfrB[15: 0]
virA[31:16] !'= vfrB[31l: 16]
virA[47:32] '= virB[47: 32]
virA[63:48] != vfrB[63:48]vfrD 63:0] <-
repl (flag)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 182 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.and Vector And lv.and

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A | B reserved opcode 0x38
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
Ilv.and rD,rA rB
Description:

The contents of vector/floating-point register virA are combined with the
contents of vector/floating-point register vfrB in a bit-wise logical AND
operation. The result is placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA63:0] AND vfrB[63: 0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 183 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any

lv.any eq.b Equal

lv.any eq.b

25 50 2o s s oo 87
lopcodeOxa| D | A | B reserved opcode 0x20
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any _eq.b rD,rA rB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
any two corresponding elements are equal; otherwise compare flag is
cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] == vfrB[7:0] ||
virA[15: 8] == vfrB[15:8] ||
virAl 23: 16] == vfrB[23:16] ||
virAl 31: 24] == vfrB[31l:24] ||
virA[39: 32] == vfrB[39:32] ||
vir Al 47: 40] == virB[47:40] ||
vfrA[55: 48] == vfrB[55:48] ||
vfir A 63: 56] == vfrB[63:56]vfr
repl (flag)

D[63: 0] <-

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 184 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any

lv.any eg.b Equal

lv.any eg.b

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B [reserved opcode 0x20
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 185 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

Iv.any_eq.h Any Equal

lv.any eq.h

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox21
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any _eq.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
isset if any two corresponding elements are equal; otherwise compare flag
is cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:

64-bit | mplementation:
flag <- vfrA[15:0] == vfrB[15:0] ||
vir A 31: 16] == vfrB[31:16] ||
virA[47:32] == virB[47:32] ||
vir Al 63: 48] == vfrB[63:48]vfrD 63:0] <-
repl (fl ag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 186 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any

Iv.any_geb Greater or Equal Than

lv.any geb

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x22
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any ge.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
any element of vfrA isgreater or equal than corresponding element of
vfrB;otherwise compare flag is cleared.

Compare flag is replicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfirA[7:0] >= virB[7:0] ||
virA[15: 8] >= vfrB[15:8] ||
virAl 23: 16] >= vfrB[23:16] ||
vir Al 31: 24] >= virB[31:24] ||
virA[39: 32] >= virB[39:32] ||
vir Al 47: 40] >= virB[47:40] ||
vfrA[55: 48] >= vfrB[55:48] ||
vfirA[63: 56] >= vfrB[63:56] vfr
repl (flag)

D[63: 0] <-

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 187 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any

Iv.any_geb Greater or Equal Than

lv.any geb

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B [reserved opcode 0x22
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 188 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

Iv.any_gen Any Greater or Equal Than

lv.any ge.h

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x23
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any ge.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
isset if any element of VfrA isgreater or equal than corresponding

element of vfrB;otherwise compare flag is cleared.

Compare flag is replicated into al bit positions of vector/floating-point
register virD.

32-bit Implementation:

64-bit | mplementation:
flag <- vfrA[15:0] >= vfrB[15:0] ||
vir A 31: 16] >= vfrB[31:16] ||
virA[47:32] >= virB[47:32] ||
virAl 63: 48] >= vfrB[63:48]vfrD 63:0] <-
repl (flag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 189 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any

lv.any_gt.b Greater Than

lv.any gt.b

25 50 2o s s oo 87
lopcodeOxa;| D | A | B |reserved opcode Ox24
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any gt.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
any element of VfrA is greater than corresponding element of
vfrB;otherwise compare flag is cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] > vfrB[7:0] ||
virA[15: 8] > vfrB[15:8] ||

virA[23:16] > vfrB[23:16] ||

virA[31:24] > vfrB[31:24] ||

virA[39:32] > vfrB[39:32] ||

virAl 47:40] > vfrB[47:40] ||

virA[55:48] > vfrB[55:48] ||

virA[63:56] > virB[63:56]virD 63:0] <- repl (flag)

Exceptions:
None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pPencores.org Rev 0.1 Preliminary Draft 190 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any

Iv.any_gt.b Greater Than

lv.any gt.b

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B reserved opcode 0x24
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 191 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

Iv.any_gt.h Any Greater Than

lv.any gt.h

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x25
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any gt.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
isset if any element of virA is greater than corresponding element of
vfrB;otherwise compare flag is cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[15:0] > vfrB[15:0] ||

virA 31: 16] > vfirB[31:16] ||

virA[47:32] > virB[47:32] ||

virA[63:48] > virB[63:48]virD 63:0] <- repl (flag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 192 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any Less

Iv.any_leb or Equal Than

lv.any leb

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x26
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any le.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compare flag is set if
any element of virA isless or equal than corresponding element of
vfrB;otherwise compare flag is cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] <= vfrB[7:0] ||
virA[15: 8] <= vfirB[15:8] ||
virAl 23: 16] <= vfrB[23:16] ||
virAl 31: 24] <= virB[31l:24] ||
virA[39: 32] <= virB[39:32] ||
vir Al 47: 40] <= virB[47:40] ||
virA[55: 48] <= vfrB[55:48] ||
virA[63: 56] <= vfrB[63:56]vfr
repl (flag)

D[63: 0] <-

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 193 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any Less

Iv.any_leb or Equal Than

lv.any leb

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B [reserved opcode 0x26
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 194 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Any

Iv.any_leh Lessor Equal Than

lv.any leh

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x27
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any le.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
isset if any element of vfrA islessor equa than corresponding element of
vfrB;otherwise compare flag is cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:
flag <- vfrA[15:0] ,= vfrB[15:0] ||
vir Al 31: 16] <= vfrB[31:16] ||
virA[47: 32] <= virB[47:32] ||
virAl 63: 48] <= vfrB[63:48]vfrD 63:0] <-
repl (flag)
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 195 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any Less

lv.any It.b Than

lv.any It.b

25 50 2o s s oo 87
lopcodeOxa| D | A | B reserved opcode 0x28
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any It.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
any element of vfrA islessthan corresponding element of vfrB;otherwise
compare flag is cleared.

Compare flag is replicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] < vfrB[7:0] ||
virA[15: 8] < vfrB[15:8] ||

virA[23:16] < vfrB[23:16] ||

virA[31:24] < vfrB[31:24] ||

virA[39:32] < vfrB[39:32] ||

virAl 47:40] < vfrB[47:40] ||

virA[55:48] < vfrB[55:48] ||

virA[63:56] < virB[63:56]virD 63:0] <- repl (flag)

Exceptions:
None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 196 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any Less

lv.any lt.b Than

lv.any lt.b

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B [reserved opcode 0x28
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 197 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Any

lv.any lt.h L ess Than

lv.any It.h

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x29
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any It.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Compare flag
issetif any element of vfrA islessthan corresponding element of
vfrB;otherwise compare flag is cleared.

Compare flag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[15:0] < vfrB[15:0] ||

virA 31: 16] < vfrB[31:16] ||

virA[47:32] < virB[47:32] ||

virA[63:48] < virB[63:48]virD 63:0] <- repl (flag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 198 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any Not

lv.any neb Equal

lv.any neb

25 250 2o s s oo 87
lopcodeOxa| D | A | B reserved opcode Ox2a
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any ne.b rD,rA rB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Compareflag is set if
any two corresponding elements are not equal; otherwise compareflagis
cleared.

Compareflag isreplicated into all bit positions of vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

flag <- vfrA[7:0] '= virB[7:0] ||
virA[15: 8] !'= virB[15:8] ||
virA[23:16] !'= vfrB[23:16] ||
virA[31:24] '= virB[31l:24] ||
virA[39:32] !'= virB[39:32] ||
virA[47:40] '= virB[47:40] ||
virA[55:48] !'= virB[55:48] ||
virA[63:56] != vfrB[63:56]vfr
repl (flag)

D[63: 0] <-

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 199 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Any Not

lv.any neb Equal

lv.any neb

31[.[]l.[.[26[25].|. || 21[20].|. . 16 [15].[..[12]10 . |8 7[.[..|.l. .o
lopcodeOxa| D | A | B [reserved opcode Ox2a
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 200 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

Iv.any_nen Any Not Equal

lv.any nenh

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox2b
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.any _ne.h rD,rA rB

Description:

All half-word elements of vector/floating-point register vfrA are compared
to half-word elements of vector/floating-point register virB. Compare flag
isset if any two corresponding elements are not equal; otherwise compare
flag is cleared.

Compare flag isreplicated into all bit positions of vector/fl oating-point
register virD.

32-bit Implementation:

64-bit | mplementation:
flag <- vfrA[15:0] != vfrB[15:0] ||
virA[31:16] !'= vfrB[31l:16] ||
virA[47:32] '= virB[47:32] ||
virA[63:48] !'= vfrB[63:48]vfrD 63:0] <-
repl (fl ag)

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pEencores.org Rev 0.1 Preliminary Draft 201 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.avg.b Vector Byte Elements Average lv.avg.b

31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A | B reserved opcode 0x39
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:

lv.avg.b rD, rA rB

Description:

The byte elements of vector/floating-point register virA are added to the
byte elements of vector/floating-point register vfrB and the sum is shifted
right by one to form the result elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- (vifrA[7:0] + vfrB[7:0]) >> 1
virD[15: 8] <- (vfrA[15:8] + vfrB[15:8]) >> 1

virD[23: 16] <- (vfrA[23:16] + virB[23:16]) >> 1
virD[31:24] <- (virA31:24] + virB[31:24]) > 1
virD[39:32] <- (vfrA[39:32] + vfrB[39:32]) > 1
virD[47:40] <- (virA47:40] + virB[47:40]) > 1
virD[55:48] <- (vfrA55:48] + vfrB[55:48]) > 1
virD[63:56] <- (vfrA63:56] + vfrB[63:56]) >> 1
Exceptions:
None
Notes:

Instruction Class\lmplementation‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 202 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.avg.h Vector Half-Word Elements Average |v.avg.h

31[:[/[[26[25[|- 22 /20l [-[16[15[: .|z a0 [.[8[7[:[[[[0
lopcodeOxa| D | A | B reserved opcode Ox3a
| 6bits | 5bits | 5bits [5bits | 3bits [Bbits |

Format:

lv.avg.h rD, rA rB

Description:

The half-word elements of vector/floating-point register virA are added to
the half-word elements of vector/floating-point register virB and the sum
is shifted right by one to form the result elements. Result elements are
placed into vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- (vfrA[15:0] + vfrB[15:0]) >> 1
virD[31:16] <- (vfrA[31:16] + vfrB[31:16]) >> 1

virD[47:32] <- (virA47:32] + virB[47:32]) > 1
virD[63:48] <- (vfrA63:48] + virB[63:48]) > 1

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 203 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements

Compare Equal lv.cmp_eq.b

lv.cmp_eq.b

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x40
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnp_eq.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Bits of the element in
vector/floating-point register vfrD are set if two corresponding compared
elements are equal; otherwise element bits are cleared.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- repl (vfrA 7:0] == vfrB[7:0]
virD[15: 8] <- repl (vfrAl 15:8] == vfrB[15: 8]
virD[23: 16] <- repl (vfrAl 23:16] == vfrB[23: 16]
virD[31: 24] <- repl (vfrAl 31:24] == vfrB[31l: 24]
virD[39: 32] <- repl (vfrAl 39:32] == vfrB[39: 32]
virD[47:40] <- repl (virA 47:40] == vfrB[47:40]
virD[55: 48] <- repl (vfrAl 55:48] == vfrB[55: 48]
virD[63:56] <- repl (vfrA 63:56] == vfrB[63:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 204 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

lv.cmp_eq.h Compare Equal

lv.cmp_eq.h

25 250 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox41
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:

lv.cnp_eq.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register vfrB. Bits of the
element in vector/floating-point register virD are set if two corresponding
compared elements are equal; otherwise element bits are cleared.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- repl (vfrA7:0] == vfrB[7:0]
virD[31: 16] <- repl (vfrAl 23:16] == vfrB[23: 16]

virD[47:32] <- repl (vfrA 39:32] == vfrB[39: 32]
virD[63: 48] <- repl (vfrAl 55:48] == vfrB[55:48]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 205 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements
lv.cmp_geb CompareGreater Thanor Iv.cmp_geb

Equal
31]:[[[[26[25[(|- 21 /20|l [-[16[15[.-[[z a0 [.[8[7[:[[0
lopcodeOxa| D | A [B |[reserved|opcode 0x42
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

Iv.cnp_ge.b rD,rA rB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Bits of the element in
vector/floating-point register virD are set if element in vfrA is greater than
or equal to element in vfrB; otherwise element bits are cleared.

32-bit Implementation:
64-bit Implementation:

virD[7:0] <- repl (vfrA 7:0] >= vfrB[7:0]
virD[15: 8] <- repl (vfrAl 15:8] >= vfrB[15: 8]
virD[23: 16] <- repl (vfrAl 23:16] >= vfrB[23: 16]
virD[31: 24] <- repl (vfrAl 31:24] >= vfrB[31l: 24]
virD[39: 32] <- repl (vfrAl 39:32] >= vfrB[39: 32]
virD[47:40] <- repl (vfrA 47:40] >= vfrB[47: 40]
virD[55: 48] <- repl (vfrAl 55:48] >= vfrB[55:48]
virD[63:56] <- repl (vfrA 63:56] >= vfrB[63:56]

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pPencores.org Rev 0.1 Preliminary Draft 206 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements
lv.cmp_geb CompareGreater Thanor Iv.cmp_geb
Equal

e A P A A P E A
lopcodeOxa| D | A | B reserved opcode 0x42|
| 6bits || 5bits | 5bits | 5bits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0Opencores.org Rev 0.1 Preliminary Draft 207 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements
lv.cmp_geh CompareGreater Thanor |Iv.cmp_geh

Equal
31]:[[[[26[25[[22 /20l [-[16[15[. [z a0 [.[8[7[:[[[/0
lopcodeOxa| D | A [B |[reserved|opcode 0x43
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnp_ge.h rD,rA rB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register vfrB. Bits of the
element in vector/floating-point register virD are set if element in virA is
greater than or equal to element in virB; otherwise el ement bits are
cleared.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- repl (vfrA7:0] >= vfrB[7:0]
virD[31: 16] <- repl (vfrAl 23:16] >= vfrB[23: 16]

virD[47:32] <- repl (vfrA 39:32] >= vfrB[39: 32]
virD[63: 48] <- repl (vfrAl 55:48] >= vfrB[55: 48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 208 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements

Compare Greater Than lv.cmp_gt.b

lv.cmp_gt.b

25 50 2o s s oo 87
lopcodeOxa;| D | A | B |reserved opcode Ox44
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

[v.cnp_gt.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Bits of the element in
vector/floating-point register virD are set if element in virA is greater than
element in virB; otherwise element bits are cleared.

32-bit Implementation:
64-bit | mplementation:
virD[7:0] <- repl(vfrA 7:0] > vfrB[7:0]

virD[15: 8] <- repl (vfrA 15:8] > vfrB[15: 8]
virD[23: 16] <- repl (vfrA[23:16] > vfrB[23:16]

virD[31: 24] <- repl (vfrA 31:24] > vfrB[31: 24]
virD[39:32] <- repl (vfrA 39:32] > vfrB[39:32]
virD[47:40] <- repl (vfirA[47:40] > virB[47:40]
virD[55: 48] <- repl (vfrA[55:48] > vfrB[55:48]
virD[63:56] <- repl (vfrA 63:56] > vfrB[63:56]
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 209 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

lv.emp_gth Compare Greater Than

lv.cmp_gt.h

25 50 2o s s oo 87
lopcodeOxa| D | A | B reserved opcode Ox45
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnmp_gt.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register vfrB. Bits of the
element in vector/floating-point register virD are set if element in VfrA is
greater than element in vfrB; otherwise element bits are cleared.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- repl (virA[7:0] > vfrB[7:0]
virD[31: 16] <- repl (vfrA[23:16] > vfrB[23:16]

virD[47:32] <- repl (vfrA 39:32] > vfrB[39: 32]
virD[63: 48] <- repl (vfrA[55:48] > vfrB[55:48]

Exceptions:
None

Notes:

Ingtruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 210 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Compare

lv.emp_leb Less Than or Equal

lv.cmp_leb

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox46
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnp_le.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Bits of the element in
vector/floating-point register virD are set if element in virA islessthan or
equal to element in vfrB; otherwise element bits are cleared.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- repl (vfrA 7:0] <= vfrB[7:0]
virD[15: 8] <- repl (vfrAl 15:8] <= vfrB[15: 8]
virD[23: 16] <- repl (vfrAl 23:16] <= vfrB[23: 16]
virD[31: 24] <- repl (vfrAl 31:24] <= vfrB[31l: 24]
virD[39: 32] <- repl (vfrAl 39:32] <= vfrB[39: 32]
virD[47:40] <- repl (virA 47:40] <= vfrB[47:40]
virD[55: 48] <- repl (vfrAl 55:48] <= vfrB[55: 48]
virD[63:56] <- repl (vfrA 63:56] <= vfrB[63:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 211 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

v.omp_len - compare Less Than or Equal

lv.cmp_leh

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox47
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnp_le.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register virB. Bits of the
element in vector/floating-point register virD are set if element in VfrA is
less than or equal to element in virB; otherwise element bits are cleared.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- repl (vfirA7:0] <= vfrB[7:0]
virD[31: 16] <- repl (vfrAl 23:16] <= vfrB[23: 16]

virD[47:32] <- repl (vfrAl 39:32] <= vfrB[39: 32]
virD[63: 48] <- repl (vfrAl 55:48] <= vfrB[55: 48]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 212 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Compare

lv.cmp It.b L ess Than

lv.cmp_It.b

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox48
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

Iv.cnmp_lt.b rD,rArB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Bits of the element in
vector/floating-point register virD are set if element in vfrA islessthan
element in virB; otherwise element bits are cleared.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- repl (vfrA 7:0] <= vfrB[7:0]
virD[15: 8] <- repl (vfrAl 15:8] <= vfrB[15: 8]
virD[23: 16] <- repl (vfrAl 23:16] <= vfrB[23: 16]
virD[31: 24] <- repl (vfrAl 31:24] <= vfrB[31l: 24]
virD[39: 32] <- repl (vfrAl 39:32] <= vfrB[39: 32]
virD[47:40] <- repl (virA 47:40] <= vfrB[47:40]
virD[55: 48] <- repl (vfrAl 55:48] <= vfrB[55:48]
virD[63:56] <- repl (vfrA 63:56] <= vfrB[63:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 213 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

lv.emp_lth ComparelLess Than

lv.cmp_It.h

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode 0x49
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

[v.cnmp_It.h rD,rArB

Description:

All half-word elements of vector/floating-point register vfrA are compared
to half-word elements of vector/floating-point register vfrB. Bits of the
element in vector/floating-point register virD are set if element in VfrA is
less than element in vfrB; otherwise element bits are cleared.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- repl (vfirA7:0] <= virB[7:0]
virD[31: 16] <- repl (vfrAl 23:16] <= vfrB[23: 16]

virD[47:32] <- repl (vfrAl 39:32] <= vfrB[39: 32]
virD[63: 48] <- repl (vfrAl 55:48] <= vfrB[55: 48]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 214 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements

lv.cmp_neb Compare Not Equal

lv.cmp_neb

e PP A P E A
lopcodeOxa| D | A | B reserved opcode Ox4a
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnp_ne.b rD,rA rB

Description:

All byte elements of vector/floating-point register virA are compared to
byte elements of vector/floating-point register virB. Bits of the element in
vector/floating-point register virD are set if two corresponding compared
elements are not equal; otherwise element bits are cleared.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- repl(vfrA[7:0] '= vfrB[7:0])
virD[15: 8] <- repl (vfrA[15:8] !'= vfrB[15:8])
virD[23: 16] <- repl (vfrA[23:16] != vfrB[23:16])
virD[31: 24] <- repl (vfrA 31:24] '= virB[31l:24])
virD[39:32] <- repl (vfrA[39:32] != virB[39:32])
virD[47:40] <- repl (virA[47:40] !'= virB[47:40])
virD[55:48] <- repl (vfrA[55:48] != vfrB[55:48])
virD[63:56] <- repl (vfrA[63:56] != vfrB[63:56])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 215 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

lv.cmp_ne.h Compare Not Equal

lv.cmp_ne.h

25 250 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox4b
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.cnp_ne.h rD,rArB

Description:

All half-word elements of vector/floating-point register virA are compared
to half-word elements of vector/floating-point register vfrB. Bits of the
element in vector/floating-point register virD are set if two corresponding
compared elements are not equal; otherwise element bits are cleared.

32-bit Implementation:

64-bit Implementation:
virD[15:0] <- repl (vfrA[7:0] '= vfrB[7:0])
virD[31:16] <- repl (vfrA 23:16] != vfrB[23:16])
virD[47:32] <- repl (vfrA[39:32] != virB[39:32])
virD[63: 48] <- repl (vfrA[55:48] != virB[55:48])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pPencores.org Rev 0.1 Preliminary Draft 216 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for Custom Vector

lv.custl . lv.custl
Instructions

A e A A A e A

' opcode Oxa | reserved lopcode Oxc [reserved

| 6bits | 18 hits | 4bits | 4bits
Format:

v.custl

Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORVDX64ll | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 217 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for Custom Vector

lv.cust2 . lv.cust2
Instructions
s A A e e X A
| opcode 0xa | reserved lopcode Oxd reserved
| 6bits | 18 bits | 4bits | 4hits
Format:
| v.cust?2
Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORVDX64ll | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 218 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for Custom Vector

lv.cust3) lv.cust3
Instructions

A e A A A e A

' opcode Oxa | reserved lopcode Oxe [reserved

| 6bits | 18 hits | 4bits | 4bits
Format:

| v.cust3

Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class | Implementation ‘
| ORVDX64ll | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 219 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Reserved for Custom Vector

lv.cust4 . lv.cust4
Instructions

e A A e A e

| opcode 0xa | reserved lopcode Oxf reserved

| 6bits | 18 bits | 4bits | 4bits
Format:

| v.cust4

Description:

This fake instruction only allocates instruction set space for custom
instructions. Custom instructions are those that are not defined by the
architecture, but instead by the implementation itself.

32-bit Implementation:

N A

64-bit | mplementation:

N A

Exceptions:

N A

Notes:

Instruction Class\lmplementation‘
| ORVDX64ll | Optiona |

WWW.0pencores.org Rev 0.1 Preliminary Draft 220 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

v maddsh Vector Half-Word Elements v maddsh
' ~ Multiply Add Signed Saturated '

25 50 2o s s oo 87
lopcodeOxa;| D | A | B |reserved opcode Ox54
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

lv.madds.h rD, rA rB

Description:

The signed half-word elements of vector/floating-point register virA are
multiplied by the signed half-word elements of vector/floating-point
register vfrB to form intermediate results. They are added to the signed
half-word VMAC dementsto form the final results that are placed again
in VMAC registers. Intermediate result is placed into vector/floating-point
register virD. If any of the final results exceeds min/max value, it is
saturated.

32-bit Implementation:
64-bit | mplementation:

virD[15: 0] <- sat32s(vfrA[15:0] * vfrB[15:0] +
VMACL(31: 0])

virD[31: 16] <- sat32s(vfrA[31l:16] * vfrB[31:16] +
VVACL(63: 32])

virD[47: 32] <- sat32s(vfrA[47:32] * virB[47:32] +
VMACHI [31: 0])

virD[63: 48] <- sat32s(vfrA[63:48] * virB[63:48] +
VMACHI [63: 32])

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 221 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

v maddsh Vector Half-Word Elements v maddsh
' ~ Multiply Add Signed Saturated '

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B reserved opcode 0x54
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 222 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.max.bo Vector Byte Elements Maximum |v.max.b

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15120 |8 7R
B |reserved opcode Ox55|
Sbits | 3bits [8bits |

Format:

lv.max.b rD,rA rB

Description:

The byte elements of vector/floating-point register virA are compared to
the byte elements of vector/floating-point register virB and larger
elements are selected to form the result elements. Result elements are
placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] > virB[7:0] ? virA[7:0]
vrfB[7:0]

virD[15:8] <- virA[15:8] > vfrB[15:8] ?
virA[15:8] : vrfB[15: 8]

virD[23: 16] <- vfrA[23:16] > vfrB[23:16] ?
virA[23:16] : vrfB[23:16]

virD[31: 24] <- vfrA[31:24] > virB[31:24] ?
vir Al 31: 24] : vrfB[31: 24]

virD[39: 32] <- vfrA[39:32] > virB[39:32] ?
virA[39: 32] : vrfB[39:32]

virD[47: 40] <- vfrA[47:40] > virB[47:40] ?
virA[47:40] : vrfB[47:40]

virD[55: 48] <- vfrA[55:48] > vfrB[55:48] ?
vir A 55:48] : vrfB[55:48]

virD[63: 56] <- vfrA[63:56] > virB[63:56] ?
vir A 63: 56] : vrfB[63:56]

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 223 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.max.b Vector Byte ElementsMaximum Iv.max.b

e P A A P A E A
lopcodeOxa| D | A | B reserved opcode Ox55|
| 6bits || 5bits | 5bits | 5bits | 3bits [8bits |

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 224 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

lv.max.h . lv.max.h
Maximum
31).|..[26[25].]..21/20].|. | [16[15]. | . [11]10 |. \8\7\-\-17_-'_-'1710\
opcodeOxa| D | A | B reserved opcode Ox56
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.max.h rD,rA rB

Description:

The half-word elements of vector/floating-point register virA are
compared to the half-word elements of vector/floating-point register virB
and larger elements are selected to form the result elements. Result
elements are placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[15:0] <- virA[15:0] > vfrB[15:0] ?
virA[15:0] : vrfB[15:0]

virD[31: 16] <- vfrA[31:16] > vfrB[31l:16] ?
virA[31: 16] : vrfB[31:16]

virD[47:32] <- virA[47:32] > virB[47:32] ?
virA[47:32] : vrfB[47:32]

virD[63: 48] <- vfrA[63:48] > virB[63:48] ?
vir A 63: 48] : vrfB[63:48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 225 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.mergeb Vector Byte ElementsMerge Iv.mergeb

125 . [2220 s s L[[-[s 7 [LEEL
opcodeOxa; D | A | B reserved opcode Ox57
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.merge.b rD,rA rB

Description:

Byte elements of the lower half of the vector/floating-point register virA
are combined with the byte elements of the lower half of vector/floating-
point register virB in such away that lowest element is from the vfrB,
second element from the vfrA, third again from the vfrB etc. Result
elements are placed into vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[7: 0] <- vfrB[7:0]
virD[15: 8] <- virAl 15: 8]
virD[23: 16] <- vfrB[23: 16]
virD[31: 24] <- vfrA[31: 24]
virD[39: 32] <- vfrB[39:32]
virD[47: 40] <- virA[47: 40]
vfrD[55: 48] <- vfrB[55: 48]
virD[63: 56] <- vfrA[63:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 226 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

Merge lv.merge.h

lv.merge.h

25 50 2o s s oo 87
lopcodeOxa| D | A | B reserved opcode OX58
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

Iv.merge.h rD,rA rB

Description:

Half-word elements of the lower half of the vector/floating-point register
vfrA are combined with the byte elements of the lower half of
vector/floating-point register virB in such away that lowest element is
from the virB, second element from the vfrA, third again from the virB
etc. Result elements are placed into vector/floating-point register virD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- vfrB[15:0]
virD[31: 16] <- vfrA[31:16]

virD[47: 32] <- virB[47: 32]
virD[63: 48] <- vfrA[63: 48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 227 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.min.b Vector Byte ElementsMinimum |[v.min.b

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15120 |8 7R
B |reserved opcode 0x59
Sbits | 3bits [8bits |

Format:

Ilv.min.b rD,rArB

Description:

The byte elements of vector/floating-point register virA are compared to
the byte elements of vector/floating-point register virB and smaller
elements are selected to form the result elements. Result elements are
placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] < virB[7:0] ? virA[7:0]
vrfB[7:0]

virD[15:8] <- virA[15:8] < vfrB[15:8] ?
virA[15: 8] : vrfB[15: 8]

virD[23: 16] <- vfrA[23:16] < vfirB[23:16] ?
virA[23:16] : vrfB[23:16]

virD[31: 24] <- vfrA[31:24] < virB[31:24] ?
vir Al 31: 24] : vrfB[31: 24]

virD[39: 32] <- vfrA[39:32] < vfrB[39:32] ?
virA[39: 32] : vrfB[39:32]

virD[47:40] <- vfirA[47:40] < virB[47:40] ?
virA[47:40] : vrfB[47:40]

virD[55: 48] <- vfrA[55:48] < vfrB[55:48] ?
vir Al 55:48] : vrfB[55:48]

virD[63: 56] <- vfrA[63:56] < virB[63:56] ?
vir A 63: 56] : vrfB[63:56]

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 228 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.min.b Vector Byte ElementsMinimum |[v.min.b

e P A A P A E A
lopcodeOxa| D | A | B reserved opcode 0x59
| 6bits || 5bits | 5bits | 5bits | 3bits [8bits |

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 229 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

lv.min.h . lv.min.h
Minimum
31).|..[26[25].]..21/20].|. | [16[15]. | . [11]10 |. \8\7\-\-17_-'_-'1710\
opcodeOxa| D | A | B |reserved opcode Ox5a
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Ilv.min.hrDrATrB

Description:

The half-word elements of vector/floating-point register virA are
compared to the half-word elements of vector/floating-point register virB
and smaller elements are selected to form the result el ements. Result
elements are placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[15:0] <- virA[15:0] < vfrB[15:0] ?
virA[15:0] : vrfB[15:0]

virD 31:16] <- vfrA[31:16] < vfrB[31l:16] ?
virA[31: 16] : vrfB[31:16]

virD[47:32] <- virA[47:32] < virB[47:32] ?
virA[47:32] : vrfB[47:32]

virD[63: 48] <- vfrA[63:48] < virB[63:48] ?
vir A 63: 48] : vrfB[63:48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 230 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements
lv.msubs.h Multiply Subtract Signed lv.msubs.h

Satur ated
31[..[[[26/25]. |- 21[20[- -[16 15[|- 1210 [.[877 [o]
lopcodeOxa| D | A [B |[reserved|opcode 0x5b
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:

lv.nmsubs.h rD, rA rB

Description:

The signed half-word elements of vector/floating-point register virA are
multiplied by the signed half-word elements of vector/floating-point
register virB to form intermediate results. They are subtracted from the
signed half-word VMAC elements to form the fina results that are placed
againin VMAC registers. Intermediate result is placed into
vector/floating-point register virD. If any of the final results exceeds
min/max value, it is saturated.

32-bit Implementation:
64-bit | mplementation:

virD[15: 0] <- sat32s(VMACL(31:0] - vfrAl15:0] *
vfrB[15: 0])

virD[31: 16] <- sat 32s(VMACL(63: 32] - vfrAl 31:16]
* vfrB[31:16])

virD[47: 32] <- sat32s(VMACHI[31:0] - vfrA[47:32]
* virB[47:32])

virD[63: 48] <- sat32s(VMACHI [63:32] - vfrAl 63:48]
* virB[63:48])

Exceptions:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 231 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements
lv.msubs.h Multiply Subtract Signed lv.msubs.h
Saturated

e A P A A P E A
lopcodeOxa| D | A | B reserved opcode Ox5b|
| 6bits || 5bits | 5bits | 5bits | 3bits [8bits |
None

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 232 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

iv.mulsh Vector Half-Word Elements v mulsh
' ' Multiply Signed Saturated ' '

31| |26 [25]]|[-[2t[20[.|. | [16[15].[.[. 11120 [[8 7] L[|
opcodeOxa| D | A | B |reserved opcode Ox5c
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

Ilv.muls.h rD,rA rB

Description:

The signed half-word elements of vector/floating-point register virA are
multiplied by the signed half-word elements of vector/floating-point
register vfrB to form the results. The result is placed into vector/floating-
point register virD. If any of the final results exceeds min/max value, it is
saturated.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- sat32s(vfrA[15:0] * vfrB[15:0])
virDf 31: 16] <- sat32s(vfrA[31:16] * vfrB[31l:16])

virD[47:32] <- sat32s(vfrA[47:32] * virB[47:32])
virD[63: 48] <- sat32s(vfrA[63:48] * virB[63:48])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64ll | Optiona |

WWW.0pEencores.org Rev 0.1 Preliminary Draft 233 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.nand Vector Not And lv.nand
31[..[[[26/25]. [[21[20] - -[16 15[.| 1210 [.[877 [Lo
lopcodeOxa| D | A | B reserved opcode Ox5d|

| 6bits | Sbits | S5hits | 5bits | 3bits | 8hits |

Format:
lv.nand rD,rA rB
Description:

The contents of vector/floating-point register virA are combined with the
contents of vector/floating-point register vfrB in a bit-wise logical NAND
operation. The result is placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA63:0] NAND vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 234 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.nor Vector Not Or lv.nor

31[:[/[[26[25[|- 22 /20l [-[16[15[: .|z a0 [.[8[7[:[[[[0
lopcodeOxa| D | A | B reserved opcode Ox5e|
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:
lv.nor rD,rArB
Description:

The contents of vector/floating-point register virA are combined with the
contents of vector/floating-point register vfrB in a bit-wise logical NOR
operation. The result is placed into vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA63:0] NOR vfrB[63: 0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 235 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.or Vector Or lv.or

31[:[/[[26[25[|- 22 /20l [-[16[15[: .|z a0 [.[8[7[:[[[[0
lopcodeOxa| D | A | B reserved opcode Ox5f|

| 6bits | Sbits | S5hits | 5bits | 3bits | 8hits |

Format:
Ilv.or rD,rArB
Description:

The contents of vector/floating-point register virA are combined with the
contents of vector/floating-point register vfrB in a bit-wise logical OR
operation. The result is placed into vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA[63:0] OR vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 236 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.pack.b Vector Byte Elements Pack lv.pack.b
31[.[.:-26[25].. - [21[20] |26 15]. . 1z [10 [.[8[7[.[.|.[| [[o]
lopcodeOxa| D | A | B reserved opcode Ox60
| |

| 6bits | Sbits | S5hits | 5bits | 3bits | 8hits |

Format:

lv.pack.b rD,rA rB

Description:

Lower half of the byte elements of the vector/floating-point register virA
are truncated and combined with the lower half of the byte truncated
elements of the vector/floating-point register vfrB in such away that
lowest elements are from vfrB and highest element from virA. Result
elements are placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[3:0] <- vfrB[3:0]
virD[7:4] <- vfrB[11l: 8]
virD[11: 8] <- vfrB[19:16]
virD[15: 12] <- vfrB[27: 24]
virD[19: 16] <- vfrB[35: 32]
virD[23: 20] <- vfrB[43:40]
virD 27: 24] <- vfrB[51: 48]
virD[31: 28] <- vfrB[59: 56]
virD[35:32] <- vfrA[3:0]
virD[39: 36] <- vfrA[11l: 8]
virD[43: 40] <- vfrA[19: 16]
virD[47: 44] <- vfirA 27: 24]
virD[51: 48] <- vfrA[35:32]
virD[55:52] <- vfrA[43:40]
virD[59: 56] <- vfrA[51: 48]
virD[63: 60] <- vfrA[59: 56]

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 237 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.pack.b Vector Byte Elements Pack lv.pack.b

e P A A P A E A
lopcodeOxa| D | A | B reserved opcode Ox60
| 6bits || 5bits | 5bits | 5bits | 3bits [8bits |

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 238 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.pack.n Vector Half-word Elements Pack |v.pack.h

31)|.|[]./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5hits | 5hits

15[[0 (8 @[HERD
B |reserved opcode Ox61
Sbits | 3bits [8bits |

Format:

| v.pack.h rD,rA rB

Description:

Lower haf of the half-word elements of the vector/floating-point register
virA are truncated and combined with the lower half of the half-word
truncated elements of the vector/floating-point register virB in such away
that lowest elements are from vfrB and highest element from vfrA. Result
elements are placed into vector/floating-point register vrD.

32-bit Implementation:
64-bit | mplementation:

virD[7: 0] <- vfrB[15:0]
virD[15: 8] <- vfrB[31:16]
virD[23: 16] <- vfrB[47:32]
virD 31:24] <- vfrB[63:48]
virD[39: 32] <- vfrA[15:0]
virD[47: 40] <- vfrA[31:16]
virD[55:48] <- vfrA[47:32]
virD[63: 56] <- vfrA[63: 48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 239 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Pack Signed

lv.packs.b lv.packs.b
P Satur ated P
31).|..[26[25].]..21/20].|. | [16[15]. | . [11]10 |. \8\7\-\-17_-'_-'1710\
lopcodeOxa| D | A | B reserved opcode 0x62
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

| v.packs.b rD, rA rB

Description:

Lower half of the signed byte elements of the vector/floating-point register
vfrA are truncated and combined with the lower half of the signed byte
truncated elements of the vector/floating-point register virB in such away
that lowest elements are from virB and highest element from vfrA. If any
truncated element exceeds signed 4-hit value, it is saturated. Result
elements are placed into vector/fl oating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[3: 0] <- sat4s(vfrB[7:0]
virD[7: 4] <- sat4s(vfrB[15: 8]
virD[11: 8] <- sat4s(vfrB[23: 16]
virD[15: 12] <- sat4s(vfrB[31: 24]
virD[19: 16] <- sat4s(vfrB[39: 32]
virD[23: 20] <- sat4s(vfrB[47: 40]
virD[27: 24] <- sat4s(vfrB[55: 48]
virD[31: 28] <- sat4s(vfrB[63:56]
virD[35: 32] <- sat4s(vfrA[7:0]
virD[39: 36] <- sat4s(vfrA[15: 8]
virD[43: 40] <- sat4s(vfrAl 23:16]
virD[47: 44] <- sat4s(vfrA] 31: 24]
virD[51: 48] <- sat4s(vfrAl 39: 32]
virD[55: 52] <- sat4s(vfrA[47:40]

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 240 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Pack Signed

lv.packs.b Satur ated

lv.packs.b

s [2o s sl s LEEEEe
lopcodeOxa| D | A | B reserved opcode 0x62
| 6bits | 5hits | 5hits | 5hits | 3bits | 8bits
virD 59: 56] <- sat4s(vfrA]55: 48]
virD 63: 60] <- sat4s(vfrA 63: 56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 241 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-word Elements Pack

lv.packs.h . lv.packs.h
P Signed Saturated P
31]:[[[[26[25[(|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
opcodeOxa| D | A | B reserved opcode 0x63
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

| v.packs.h rD, rA rB

Description:

Lower haf of the signed halfpword elements of the vector/floating-point
register virA are truncated and combined with the lower half of the signed
half-word truncated elements of the vector/floating-point register virB in
such away that lowest elements are from vfrB and highest el ement from
virA. If any truncated element exceeds signed 8-bit value, it is saturated.
Result elements are placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD[7: 0] <- sat8s(vfrB[15:0])
virD[15: 8] <- sat8s(vfrB[31l:16])
virD[23: 16] <- sat8s(vfrB[47:32])
virD[31: 24] <- sat8s(vfrB[63:48])
virD[39: 32] <- sat8s(vfrA[15:0])
virD[47: 40] <- sat8s(vfrA[31:16])
virD[55: 48] <- sat8s(vfirA[47:32])
virD[63: 56] <- sat8s(vfrA[63:48])

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 242 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-word Elements Pack

lv.packs.h Signed Satur ated

lv.packs.h

1 25 25 . 20 e sl a0 (s L
opcodeOxa| D | A | B reserved opcode 0x63
| 6bits | 5hits | 5hits | 5hits | 3bits | 8bits

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 243 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Pack

Unsigned Satur ated Iv.packus.b

lv.packus.b

25 50 2o s s oo 87
lopcodeOxa;| D | A | B |reserved opcode Ox64
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

| v. packus.b rD, rA rB

Description:

Lower half of the unsigned byte elements of the vector/floating-point
register vfrA are truncated and combined with the lower half of the
unsigned byte truncated elements of the vector/floating-point register virB
in such away that lowest elements are from vfrB and highest element
from vfrA. If any truncated element exceeds unsigned 4-bit value, it is
saturated. Result elements are placed into vector/floating-point register
virD.

32-bit Implementation:
64-bit | mplementation:

virD[3: 0] <- sat4u(vfrB[7:0]
virD[7: 4] <- sat4u(vfrB[15: 8]
virD[11: 8] <- sat4u(vfrB[23: 16]
virD[15: 12] <- sat4u(vfrB[31: 24]
virD[19: 16] <- sat4u(vfrB[39: 32]
virD[23: 20] <- sat4u(vfrB[47: 40]
virD[27: 24] <- sat4u(vfrB[55: 48]
virD[31: 28] <- sat4u(vfrB[63:56]
virD[35: 32] <- satd4u(vfrA[7:0]
virD[39: 36] <- sat4u(vfrA[15: 8]
virD[43: 40] <- sat4u(vfrAl 23:16]
virD[47: 44] <- sat4u(vfrA] 31: 24]

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 244 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Pack

lv.packus.b Unsigned Saturated

lv.packus.b

31 |[..[26[25]. . [22/20].|. - [16 [15]. - . 1220 [.[8[7. L[[.||
opcodeOxa| D | A | B reserved opcode Ox64
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |
virD[51: 48] <- sat4u(vfrAl 39: 32]

vfrD[55:52] <- sat4u(vfrAl47:40]
virD 59: 56] <- sat4u(vfrA]55: 48]
virD[63: 60] <- sat4u(vfrA] 63:56]
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 245 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-word Elements

lv.packush o Unsigned Saturated

lv.packus.h

25 50 2o s s oo 87
opcodeOxa| D | A | B reserved opcode Ox65
| 6bits | 5bits | 5bits [5bits | 3bits [8bits |

Format:

| v. packus.h rD, rA rB

Description:

Lower haf of the unsigned hafpword elements of the vector/floating-
point register virA are truncated and combined with the lower haf of the
unsigned half-word truncated elements of the vector/floating-point register
virB in such away that lowest elements are from vfrB and highest element
from vfrA. If any truncated element exceeds unsigned 8-bit value, it is
saturated. Result elements are placed into vector/floating-point register
virD.

32-bit Implementation:
64-bit | mplementation:

virD[7: 0] <- sat8u(vfrB[15:0])
virD[15: 8] <- sat8u(vfrB[31l:16])
virD[23: 16] <- sat8u(vfrB[47:32])
virD[31: 24] <- sat8u(vfrB[63:48])
virD[39: 32] <- sat8u(vfrA[15:0])
virD[47: 40] <- sat8u(vfrA[31:16])
virD[55: 48] <- sat8u(vfrAl47:32])
virD[63: 56] <- sat8u(vfrA[63:48])

Exceptions:

None

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 246 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-word Elements

lv.packush o Unsigned Saturated

lv.packus.h

31[.[/l.[.[26[25].|. || 21[20].|. . 16 [15].[.|.[12]10 . |8 7[.[.. ..o
opcodeOxa| D | A | B [reserved opcode 0x65
| 6bits || 5bits | 5bits | 5hits | 3bits [8bits |

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 247 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.perm.n Vector Nibble Elements Permute Iv.perm.n

31)|.|/]./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15120 |8 7R
B |reserved opcode 0x66
Sbits | 3bits [8bits |

Format:

[v.permn rD,rA rB

Description:

The 4-bit elements of vector/floating-point register virA are permuted
according to corresponding 4-bit values in vector/floating-point register
virB. Result elements are placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD[3:0] <- vfirA[vfrB[3:0]*4+3: vfrB[3:0]*4]
virD[7:4] <- virA[virB[7:4]*4+3:virB[7: 4] *4]
virD[11: 8] <- virAlvfrB[11: 8] *4+3: virB[11: 8] *4]
virD[15: 12] <-

vir Al virB[15: 12] *4+3: vfr B[15: 12] *4]

virD[19: 16] <-

vir Al virB[19: 16] *4+3: vfr B[19: 16] *4]

virD[23: 20] <-

vir Al virB[23: 20] *4+3: vfr B[23: 20] *4]

virD 27: 24] <-

vir Al virB[27: 24] *4+3: vir B[27: 24] *4]

virD[31: 28] <-

vir Al virB[31: 28] *4+3: vfr B[31: 28] *4]

vfrD[35: 32] <-

vir Al vfirB[35: 32] *4+3: vfr B[35: 32] *4]

virDf 39: 36] <-

vir Al virB[39: 36] *4+3: vfr B[39: 36] *4]

virD[43: 40] <-

vir Al virB[43:40] *4+3: vfr B[43: 40] *4]

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 248 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.perm.n Vector Nibble Elements Permute Iv.perm.n

31)...[.26/25|...[2120.|. .16 |15|. .. 1110 |. 87| .. H.Ho}
lopcodeOxa| D | A | B reserved opcode Ox66
| 6bits | 5bits | 5bits | 5hits | 3bits | 8hits |

virD[47: 44] <-

vir Al virB[47: 44] *4+3: vir B[47: 44] *4]

virD[51: 48] <-

vir Al virB[51: 48] *4+3: virB[51: 48] *4]

vfrD[55:52] <-

vir Al virB[55:52] *4+3: vfr B[55: 52] *4]

vfrD[59: 56] <-

vir Al virB[59: 56] *4+3: vfr B[59: 56] *4]

virD[63: 60] <-

vir Al virB[63: 60] *4+3: vfrB[63: 60] *4]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 249 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.rl.b Vector Byte Elements Rotate L eft lv.ri.b

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15[[0 (8 @[HERD
B |reserved opcode 0x67
Sbits | 3bits [8bits |

Format:

Iv.rl.brD,rArB

Description:

The contents of byte elements of vector/floating-point register virA are
rotated left by the number of bits specified in lower 3 bitsin each byte
element of vector/floating-point register virB. Result elements are placed
into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] rl vfrB[2:0]

virD[15: 8] <- virA[15:8] rl vfrB[10: 8]
virD[23: 16] <- vfrA[23:16] rl vfrB[18: 16]
virD[31: 24] <- virA[31:24] rl| vfrB[26:24]
virD[39: 32] <- vfrA[39:32] rl vfrB[34:32]
virD[47:40] <- virA[47:40] rl| vfrB[42: 40]
virD[55: 48] <- vfrA[55:48] rl vfrB[50: 48]
virD[63: 56] <- vfrA[63:56] rl vfrB[58:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 250 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.rl.h Vector Half-Word Elements Rotate Left Iv.rl.h

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15120 |8 7R
B |reserved opcode 0x68,
Sbits | 3bits [8bits |

Format:

Iv.rl.h rD,rArB

Description:

The contents of half-word elements of vector/floating-point register virA
are rotated left by the number of bits specified in lower 4 bitsin each half-
word element of vector/floating-point register virB. Result elements are
placed into vector/floating-point register vrD.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- virA[15:0] rl vfrB[3:0]
virD[31: 16] <- vfrA[31:16] rl vfrB[19: 16]

virD[47:32] <- virA[47:32] rl vfrB[35:32]
virD[63: 48] <- vfrA[63:48] rl vfrB[51: 48]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 251 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.dl Vector Shift Left Logical lv.dl
31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A | B reserved opcode Ox6b

| |

| 6bits | Sbits | S5hits | 5bits | 3bits | 8hits |

Format:
lv.sll rDrArB
Description:

The contents of vector/floating-point register virA are shifted left by the
number of bits specified in lower 4 bitsin each byte element of
vector/floating-point register virB, inserting zeros into the low-order bits
of vfrD. Result elements are placed into vector/floating-point register
virD.

32-bit Implementation:
64-bit | mplementation:

virD 63:0] <- vfrA[63:0] << vfrB[2:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 252 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.dl.b Vector Byte Elements Shift Left Logical |v.dll.b

31)|.|[./26125]. .| 21201 . |. 16
opcodeOxa| D | A
| 6bits | 5bits | 5hits

15120 |8 7R
B |reserved opcode 0x69
Sbits | 3bits [8bits |

Format:

lv.sll.brDrA B

Description:

The contents of byte elements of vector/floating-point register virA are
shifted left by the number of bits specified in lower 3 bitsin each byte
element of vector/floating-point register virB, inserting zeros into the low-
order bits elements. Result elements are placed into vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] << vfrB[2:0]

virD[15: 8] <- vfrA[15:8] << vfrB[10: 8]
virD[23: 16] <- vfrA[23:16] << vfrB[18: 16]
virD[31: 24] <- virA[31:24] << vfrB[26: 24]
virD[39: 32] <- vfrA[39:32] << vfrB[34:32]
virD[47: 40] <- virA[47:40] << vfrB[42:40]
virD[55: 48] <- vfrA[55:48] << vfrB[50: 48]
virD[63: 56] <- vfrA[63:56] << vfrB[58:56]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 253 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Shift L eft

lv.gll.h . lv.dl.h
L ogical
31| |26 [25]]|[-[2t[20[.|. | [16[15].[.[. 11120 [[8 7] L[|
opcodeOxa| D | A | B |reserved opcode Ox6a
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.sll.h rDrArB

Description:

The contents of half-word elements of vector/floating-point register virA
are shifted left by the number of bits specified in lower 4 bitsin each half-
word element of vector/floating-point register virB, inserting zeros into
the low-order bits elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- vfrAl15:0] << vfrB[3:0]
virD[31: 16] <- vfrA[31l:16] << vfrB[19: 16]

virD[47:32] <- virA[47:32] << vfrB[35:32]
virD[63: 48] <- vfrA[63:48] << vfrB[51: 48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 254 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Shift Right

lv.sra.b . . lv.sra.b
Arithmetic
31).|..[26[25].]..21/20].|. | [16[15]. | . [11]10 |. \8\7\-\-17_-'_-'1710\
lopcodeOxa| D | A | B reserved opcode Ox6e
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits
Format:

lv.sra.b rD,rArB

Description:

The contents of byte elements of vector/floating-point register virA are
shifted right by the number of bits specified in lower 3 bitsin each byte
element of vector/floating-point register virB, inserting most significat bit
of each dement into the high-order bits. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] sra vfrB[2:0]

virD[15: 8] <- vfrAl 15:8] sra vfrB[10: 8]
virD[23: 16] <- vfrA[23:16] sra vfrB[18: 16]
virD[31: 24] <- vfrA[31:24] sra vfrB[26: 24]
virD[39: 32] <- vfrA[39:32] sra vfrB[34: 32]
virD[47: 40] <- vfrA[47:40] sra vfrB[42: 40]
virD[55: 48] <- vfrA[55:48] sra vfrB[50: 48]
virD[63: 56] <- vfrA[63:56] sra vfrB[58:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0PEeNncores.org Rev 0.1 Preliminary Draft 255 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Shift Right

lv.sra.h) : lv.sra.h
Arithmetic
31).|..[26[25].]..21/20].|. | [16[15]. | . [11]10 |. \8\7\-\-17_-'_-'1710\
opcodeOxa| D | A | B reserved opcode Ox6f
| 6bits | 5bits | 5hits | 5hits | 3hbits | 8hits
Format:

lv.sra.h rD,rArB

Description:

The contents of half-word elements of vector/floating-point register virA
are shifted right by the number of bits specified in lower 4 bitsin each
half-word element of vector/floating-point register virB, inserting most
significant bit of each element into the low-order bits. Result elements are
placed into vector/floating-point register vrD.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- vfrA[15:0] sra vfrB[3:0]
virD[31: 16] <- vfrA[31l:16] sra vfrB[19: 16]

virD[47:32] <- virA[47:32] sra vfrB[35:32]
virD[63: 48] <- vfrA[63:48] sra vfrB[51: 48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 256 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.sr Vector Shift Right Logical lv.sri
31[:[[[[26[25[|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A | B reserved opcode 070
| |

| 6bits | Sbits | S5hits | 5bits | 3bits | 8hits |

Format:
lv.srl rD,rArB
Description:

The contents of vector/floating-point register virA are shifted right by the
number of bits specified in lower 4 bitsin each byte element of

vector/fl oating-point register vfrB, inserting zeros into the high-order bits
of vfrD. Result elements are placed into vector/floating-point register
virD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA63:0] >> vfrB[2:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 257 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Shift Right

lv.srl.b : lv.srl.b
L ogical
31[:[[[[26[25[(|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
lopcodeOxa| D | A [B |reserved|opcode Oxéc|
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits
Format:

lv.srl.brD,rArB

Description:

The contents of byte elements of vector/floating-point register virA are
shifted right by the number of bits specified in lower 3 bitsin each byte
element of vector/floating-point register virB, inserting zerosinto the
high-order bits elements. Result elements are placed into vector/floating-
point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] >> vfrB[2:0]

virD[15: 8] <- vfirAl 15:8] >> vfrB[10: 8]
virD[23: 16] <- vfrA[23:16] >> vfrB[18: 16]
virD[31: 24] <- virA[31:24] >> vfrB[26: 24]
virD[39: 32] <- vfrA[39:32] >> vfrB[34: 32]
virD[47: 40] <- virA[47:40] >> vfrB[42: 40]
virD[55: 48] <- vfrA[55:48] >> vfrB[50: 48]
virD[63: 56] <- vfrA[63:56] >> vfrB[58:56]

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 258 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Shift Right

lv.srl.h . lv.srl.h
L ogical
31]:[[[[26[25[(|- 22 /20l [-[16[15[. [z a0 [.[8[7[:[[0
opcodeOxa| D | A | B |reserved opcode Ox6d
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits
Format:

lv.srl.h rD,rArB

Description:

The contents of half-word elements of vector/floating-point register virA
are shifted right by the number of bits specified in lower 4 bitsin each
half-word element of vector/floating-point register virB, inserting zeros
into the low-order bits of elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- vfrAl15:0] >> vfrB[3:0]
virD[31: 16] <- vfrA[31l:16] >> vfrB[19: 16]

virD[47:32] <- virA[47:32] >> vfrB[35:32]
virD[63: 48] <- vfrA[63:48] >> vfrB[51: 48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 259 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.sub.b Vector Byte Elements Subtract Signed Iv.sub.b

31[..[[[26/25]. [[21[20] - -[16 15[.| 1210 [.[877 [Lo
opcodeOxa| D | A | B reserved opcode 0x71\
| 6bits | 5bits | 5bits | 5hits | 3bits | 8hits ‘

Format:

lv.sub.b rD,rA rB

Description:

The byte elements of vector/floating-point register virB are subtracted
from the byte elements of vector/floating-point register virA to form the
result elements. Result elements are placed into vector/floating-point
register virD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] - virB[7:0]
virD[15: 8] <- vfirAl 15:8] - vfrB[15 8]
virD[23: 16] <- vfrA[23: 16] vfrB[23: 16]
virD[31: 24] <- vfrA[31:24] - vfrB[31l: 24]
virD[39:32] <- vfrA[39:32] - vfrB[39:32]
virD[47:40] <- virA[47:40] - vfrB[47:40]
virD[55: 48] <- vfrA[55:48] - vfrB[55:48]
virD[63: 56] <- vfrA[63:56] - vfrB[63:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pPEeNcores.org Rev 0.1 Preliminary Draft 260 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements Subtract

lv.sub.h : lv.sub.h
Signed
31|/l /28125, [21/20[. | [16 a5 [. | [11[10 .87 [.[. .|/l [o]
opcodeOxa| D | A | B reserved opcode Ox72
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.sub.h rD,rArB

Description:

The half-word elements of vector/floating-point register virB are
subtracted from the half-word elements of vector/floating-point register
vfrA to form the result elements. Result e ements are placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- vifrA15:0] - vfrB[15:0]
virD[31:16] <- vfrA[31l:16] - vfrB[31l: 16]

virD[47:32] <- virA[47:32] - vfrB[47: 32]
virD[63: 48] <- vfrA[63:48] - vfrB[63:48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 261 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Subtract

lv.subs.b : lv.subs.b
Signed Saturated
31|/l /28/25.|.|.[21/20[. | [16 a5 || [11[10 [.[8[7[.[..[/[[o]
opcodeOxa| D | A | B reserved opcode Ox73
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.subs.b rD,rA rB

Description:

The byte elements of vector/floating-point register virB are subtracted
from the byte elements of vector/floating-point register virA to form the
result elements. If the result exceeds min/max value for the destination
datatype, it is saturated to min/max value and placed into vector/floating-
point register vfrD.

32-bit Implementation:
64-bit | mplementation:
virD[7:0] <- sat8s(vfrA[7:0] + vfrB[7:0])

virD[15: 8] <- sat8s(vfrA[15:8] + vfrB[15:8])
virD[23: 16] <- sat8s(vfrA[23:16] + vfrB[23:16])

virD[31: 24] <- sat8s(vfrA[31:24] + vfrB[31l:24])
virD 39: 32] <- sat8s(vfrA[39:32] + vfrB[39:32])
virD[47: 40] <- sat8s(vfirA[47:40] + virB[47:40])
vfrD[55: 48] <- sat8s(vfrA[55:48] + vfrB[55:48])
virD 63: 56] <- sat8s(vfrA[63:56] + vfrB[63:56])
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 262 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

v subs.h Vector Half-Word Elements Subtract v subs.h
' ' Signed Saturated ' '

31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[11220 [.[8 7] L[|
lopcodeOxa| D | A | B |reserved opcode Ox74
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.subs.h rD,rA rB

Description:

The half-word elements of vector/floating-point register virB are
subtracted from the half-word elements of vector/floating-point register
VIrA to form the result elements. If the result exceeds min/max value for
the destination data type, it is saturated to min/max value and placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- satl6s(vfrA[15:0] - vfrB[15:0])
virDf 31: 16] <- satl6s(vfrA[31:16] - vfrB[31l:16])

virD[47: 32] <- satl16s(vfrA[47:32] - virB[47:32])
virD[63: 48] <- satl16s(vfrA[63:48] - virB[63:48])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX641 | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 263 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Subtract

lv.subu.b . lv.subu.b
Unsigned
31|/l /28/25.|.|.[21/20[. | [16 a5 || [11[10 [.[8[7[.[..[/[[o]
lopcodeOxa| D | A | B reserved opcode Ox75
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.subu.b rD,rA rB

Description:

The unsigned byte elements of vector/floating-point register vfrB are
subtracted from the unsigned byte elements of vector/floating- point
register vfrA to form the result elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[7:0] <- vfrA[7:0] - virB[7:0]
virD[15: 8] <- vfrA[15:8] - vfrB[15 8]
virD[23: 16] <- vfrA[23: 16] vfrB[23: 16]
virD[31: 24] <- vfrA[31:24] - vfrB[31l: 24]
virD[39: 32] <- vfrA[39:32] - vfrB[39:32]
virD[47:40] <- vfirA[47:40] - vfrB[47:40]
virD[55: 48] <- vfrA[55:48] - vfrB[55:48]
virD[63: 56] <- vfrA[63:56] - vfrB[63:56]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 264 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

v subu.h Vector Half-Word Elements \v.subu.h
' ' Subtract Unsigned ' '

31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
lopcodeOxa| D | A | B reserved opcode Ox76
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.subu.h rD,rA rB

Description:

The unsigned half-word elements of vector/floating-point register vfrB are
subtracted from the unsigned half-word elements of vector/floating-point
register vfrA to form the result elements. Result elements are placed into
vector/floating-point register vfrD.

32-bit Implementation:

64-bit | mplementation:
virD[15:0] <- vifrA15:0] - vfrB[15:0]
virD[31:16] <- vfrA[31:16] - vfrB[31l: 16]

virD[47:32] <- virA[47:32] - vfrB[47: 32]
virD[63: 48] <- vfrA[63:48] - vfrB[63:48]

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 265 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Byte Elements Subtract

lv.subus.b : lv.subus.b
Unsigned Saturated
31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
opcodeOxa| D | A | B reserved opcode Ox77
| 6bits | 5hits | 5hits | 5hits | 3hbits | 8hits

Format:

|l v.subus.b rD, rA rB

Description:

The unsigned byte elements of vector/floating-point register virB are
subtracted from the unsigned byte elements of vector/floating- point
register virA to form the result elements. If the result exceeds min/max
value for the destination data type, it is saturated to min/max value and
placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:
virD[7:0] <- sat8u(vfrA[7:0] + vfrB[7:0])

virD[15: 8] <- sat8u(vfrA[15:8] + vfrB[15:8])
virD[23: 16] <- sat8u(vfrA23:16] + vfrB[23:16])

virD[31: 24] <- sat8u(vfrA[31:24] + virB[31l:24])
virD 39: 32] <- sat8u(vfrA[39:32] + vfrB[39:32])
virD[47: 40] <- sat8u(vfrA[47:40] + virB[47:40])
vfrD[55: 48] <- sat8u(vfrA[55:48] + vfrB[55:48])
virD 63: 56] <- sat8u(vfrA[63:56] + vfrB[63:56])
Exceptions:
None
Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 266 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

\v.subus.h Vector Half-Word Elements v subus.h
' ' Subtract Unsigned Saturated ' '

31| |26 [25]]|[-[2t[20[.|. | [16[15[.[.[. /1120 [[8 7] L[|
lopcodeOxa| D | A | B reserved opcode Ox78
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

lv.subus.h rD, rA rB

Description:

The unsigned half-word elements of vector/floating-point register vfrB are
subtracted from the unsigned half-word elements of vector/floating-point
register virA to form the result elements. If the result exceeds min/max
value for the destination data type, it is saturated to min/max value and
placed into vector/floating-point register virD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- satl6u(vfrA[15:0] - vfrB[15:0])
virD 31: 16] <- satl6u(vfrA[31:16] - vfrB[31l:16])

virD[47: 32] <- satl6u(vfrA[47:32] - virB[47:32])
virD[63: 48] <- satl6u(vfrA[63:48] - virB[63:48])

Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0Pencores.org Rev 0.1 Preliminary Draft 267 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.unpack.b Vector Byte Elements Unpack Iv.unpack.b

125 . [2220 s s L[t [-[s 7 [LEEL
opcodeOxa; D | A | B reserved opcode 0x79
| 6bits | 5bits | 5hits | 5hits | 3hits | 8hits

Format:

| v.unpack.b rD,rA rB

Description:

Lower half of 4-bit elementsin vector/floating-point register virA are
sign-extended and placed into vector/floating-point register virD.

32-bit Implementation:
64-bit | mplementation:

virD 7: 0] <- exts(vfrA3:0])
virD[15: 8] <- exts(vfirA[7:4])

virD 23: 16] <- exts(vfrA[11:8])
virD[31: 24] <- exts(vfrA[15:12])
virD[39: 32] <- exts(vfrA[19:16])
virD[47: 40] <- exts(vfrA]23:20])
virD[55: 48] <- exts(vfrA[27:24])
virD[63: 56] <- exts(vfrA[31:28])
Exceptions:
None
Notes:

Ingtruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 268 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

Vector Half-Word Elements

Unpack lv.unpack.h

lv.unpack.h

25 250 2o s s oo 87
lopcodeOxa| D | A | B reserved opcode Ox7a
| 6bits | 5bits | 5bits [5bits | 3bits [8Bbits |

Format:
| v.unpack.h rD,rA rB
Description:

Lower haf of 8-bit elements in vector/floating-point register virA are
sign-extended and placed into vector/floating-point register virD.

32-bit Implementation:

64-bit | mplementation:
virD[15: 0] <- exts(vfrA7:0])
virD[31: 16] <- exts(vfrA[15:8])

virD[47: 32] <- exts(vfrA]23:16])
virD[63: 48] <- exts(vfrA[31:24])

Exceptions:
None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0OPEeNCOores.org Rev 0.1 Preliminary Draft 269 of 339

OpenCores OpenRISC 1000 System Architecture Manual April 23, 2001

lv.xor Vector Exclusive Or lv.xor
31[..[[[26/25]. [[21[20] - -[16 15[.| 1210 [.[877 [Lo
lopcodeOxa| D | A | B reserved opcode Ox7b|

| 6bits | Sbits | S5hits | 5bits | 3bits | 8hits |

Format:
lv.xor rD,rArB
Description:

The contents of vector/floating-point register virA are combined with the
contents of vector/floating-point register vfrB in a bit-wise logical XOR
operation. The result is placed into vector/floating-point register vfrD.

32-bit Implementation:
64-bit | mplementation:

virD[63: 0] <- virA[63:0] XOR vfrB[63:0]
Exceptions:

None

Notes:

Instruction Class | Implementation ‘
| ORVDX64| | Required |

WWW.0pencores.org Rev 0.1 Preliminary Draft 270 of 339

9 Exception Model

This chapter describes exception mechanism, exception types and their handling.

9.1 Introduction

Exception mechanism allows the processor to change to supervisor state as a result of
external signals, errors, or unusual conditions arising in the execution of instructions.
When exceptions occur, information about the state of the processor is saved to certain
registers and the processor begins execution at the address predetermined for each
exception. Processing of exceptions begins in supervisor mode.

OpenRISC 1000 defines special support for fast exception processing also called fast
context switch support. This allows very rapid interrupt processing. It is achieved with
shadowing general-purpose and some special registers.

Architecture requires that all exceptions be handled in strict order with respect to the
instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, are required to complete before
the exception is taken.

Exceptions can occur while an exception handler routine is executing, and multiple
exceptions can become nested. Support for fast exceptions alows fast nesting of
exceptions until al shadowed registers are used.

9.2 Exception Classes

All exceptions can be described as precise or imprecise and either synchronous or
asynchronous. Synchronous are caused by instructions and asynchronous are caused by
events externa to the processor.

TYPE EXCEPTION
Asynchronous/nonmaskable | Bus Error
Reset
Asynchronous/maskable External Interrupt
Synchronous/precise Instruction-caused exceptions excluding floating-point
imprecise exceptions
Synchronous/imprecise Instruction-caused floating-point imprecise exceptions

Table 9-1. Exception Classes

Whenever an exception occurs, current PC is saved to current EPCR and new PC is set
with the vector address according to the Table 9-2.

EXCEPTION TYPE | VECTOR CAUSING CONDITIONS
OFFSET

Reset 0x100 | Caused by soft and hard reset.

Bus Error 0x200 | The causes are implementation-specific, but
typically they are related to bus errors and
attempts to access invalid physical address.

Data Page Fault 0x300 No matching PTE found in page tables or page
protection violation for |oad/store operations.

Instruction Page Fault 0x400 No matching PTE found in page tables or page
protection violation for instruction fetch.

Low Priority External 0x500 Low priority external interrupt asserted.

Interrupt

Alignment 0x600 L oad/store access to naturally not aligned
location.

[llegal Instruction 0x700 [llega instruction in the instruction stream.

On OpenRISC implementations with lower 16
GPRs when accessing upper 16 registers out of
32 architectural GPRs. On all implementations if
SR[CID] would have to go out of range in order
to process next exception.

High Priority 0x800 High priority external interrupt asserted.

External Interrupt

D-TLB Miss 0x900 No matching entry in DTLB (DTLB miss).

[-TLB Miss OxAO00 | Nomatching entry inITLB (ITLB miss).

Range 0xBOO | If programmed in SR, setting of certain flags, like
SR[OV], causes range exception.

System Call OxCO00 | System call initiated by software.

Breakpoint 0xDO00 | Breakpoint instruction detected in instruction
Stream or initiated by the debug module.

Reserved OXEOO | Reserved for future use.

Reserved OxF0O0 Reserved for future use.

Reserved 0x1000 - | Reserved for implementation-specific exceptions.

0x1800

Reserved 0x1900 - | Reserved for custom exceptions.

Ox1F00

Table 9-2. Exception Types and causing conditions

9.3 EXxception Processing

Whenever an exception occurs, current PC is saved to current EPCR. SR is saved to the
current ESR. Furthermore current EEAR is set with the effective address in question if
one of the following exceptions occurs:
- BusError

IMMU page fault

DMMU page fault

Alignment

[-TLB miss

D-TLB miss

SR[CID] isincremented with each new exception so that a new set of shadowed registers
isused. If SR[CID] will overflow with the current exception, range exception is invoked.

However if SR[CE] is not set, fast context switching is not enabled. In this case all
registers must be saved by the exception handler routine.

All exceptions set new SR where both MMUSs are disabled (address trandlation disabled),
supervisor mode is turned on and new exceptions are disabled (SR[DME]=0,
SR[IME]=0, SR[SUPV=1, SR[EXR]=0).

When enough machine state information has been saved by the exception handler,
SR[EXR] should be set so that new exceptions can be nested. If desired, interrupt
exceptions can be masked with SR[EIR], regardless that al other exceptions have been
re-enabled.

When returning from exception handler with l.rfe, CID will be automatically
decremented and previous machine state will be restored. If shadowed registers are not
enabled, clear SR[EXR] and set appropriately current EPCR and ESR registers before
executing |.rfe.

9.4 Fast Context Switching (optional)

Fast context switching is a technique, which reduces register storing to stack when
exceptions occur. Only one type of exception can be handled, so its up to the software to
figure out what caused it. Using software, both interrupt handler invokation and thread
switching can be handled very fast. Hardware should be capable of switching between
contexts in only one cycle.

Context can aso be switched during exception, or by using a supervisor register CXR
(context register) available only in supervisor mode. CXR isthe samefor al contexts.

9.4.1 Changing Context in Supervisor Mode

Read/write register CXR consists of two parts: lower 16 bits represents current context
register set and upper ones, which represents current CID. CCID cannot be accessed in
user mode. Writing to CCID causes immediate context change. Reading from CCID
returns running (current) context 1D. Context with CID=0 is also called the main context.

BIT 31-16 15-0
|dentifier CCID CCRS
Reset 0 0
CCRS has two functions:

When exception occurs it holds previous CID
It is used to access other context's registers

9.4.2 Context Switch Caused by Exception

When exception occurs and fast context switching is enabled, CCID is copied to CCRS
and then set to zero, thus switching to main context.
Functions of the main context are:

switch between threads

handle exceptions

prepare, load, save and release context identifiers to/from CID table

Also algorithm should store CXR in its genera purpose register as soon as possible, to
allow further exception nesting.

The following table shows example how CID table could be used. Generally there is no
need that free exception contexts are equal .

CID Function
7
6 Exception contexts
5
4
2 Thread contexts
1
0 Main context

As we can see, we have four thread contexts loaded and we can switch between them
freely using main context, running in supervisor mode. When exception occurs, we find
out what caused it and switch to the next free exception context. Since exceptions can be

nested we may need more free contexts as we have them available. We are then forced to
store some of them to memory and then switch to new exception.

Algorithm used in main context should be kept as simple as possible. It should have
enough (its own) registersto store information such:
- current running CID
next exception
thread cycling info
pointers to context table in memory
copy of CXR

If number of interrupts is large, we can use some sort of defered interrupt calls. Main
context algorithm should store just 1/O information passed by interrupt for further
execution and return from main context as soon as possible.

9.4.3 Accessing Other Context Registers

This operation can be done only in supervisor mode. In basic instruction set we have
[.mtspr and |.mfspr instructions.

9.4.4 System Callsand Parameter Passing

System calls can aso be called through context switching. We can deliberately cause
exception like | .] - x, which tries to jump in protected system area and causes page
fault exception. Main context agorithm then finds out, that exception was caused by
illegal jump and addresses function with index x. Called kernel function then retrieves
registers and stores result to previous thread registers using copy of CXR.

10 Memory Modd

This chapter describes the OpenRISC 1000 weakly-ordered memory model.

10.1 Memory

Memory is byte-addressed, with halfword accesses aligned on 2-byte boundaries,
singleword accesses aligned on 4-byte boundaries, and doubleword accesses aligned on
8-byte boundaries.

10.2 Memory Access Ordering

The OpenRISC 1000 architecture specifies weakly-ordered memory model for
uniprocessor and shared memory multiprocessor systems. This model has advantage of
higher-performance memory system but places responsibility for strict access ordering on
the programmer.

The order in which the processor performs memory access, the order in which those
accesses complete in memory, and the order in which those accesses are viewed by
another processor may all be different. Two means of enforcing memory access ordering
are provided to alow programs in uniprocessor and multiprocessor system to share
memory.

An OpenRISC 1000 processor implementation may aso implement more restrictive
strongly-ordered memory model. Programs written for weakly-ordered memory model
will automatically work on processors with strongly-ordered memory model.

10.2.1 Memory Synchronize Instruction

The I.msync instruction permit the program to control the order in which load and store
operations are performed. This synchronization is accomplished by requiring programs to
indicate explicitly in the instruction stream, by inserting a memory sync instruction, that
synchronization is required. The memory sync instruction ensures that al memory
accesses initiated by a program have been performed before the next instruction is
executed.

OpenRISC 1000 processor implementations, that implement strongly-ordered memory
model instead of weakly-ordered one, can execute memory synchronization instruction as
ano-operation instruction.

10.2.2 Pages Designated as Weakly-Ordered-M emory

When a memory page is designated as Wesakly-Ordered-Memory (WOM) page,
instructions and data can be accessed out-of-order and with prefetching. When a page is
designated as not WOM, instruction fetches and |oad/store operations are performed in-
order without any prefetching.

OpenRISC 1000 scalar processor implementations, that implement strongly-ordered
memory model instead of weakly-ordered one and perform load and store operations in-
order, are not required to implement WOM hit in the MMU.

10.3 Atomicity

A memory access is atomic if it is aways performed in its entirerty with no visible
fragmentation. Atomic memory accesses are specifically required to implement software
semaphores and other shared structures in systems where two different processes on the
same processor, or two different processors in a multiprocessor environment, access the
same memory location with intent to modify it.

OpenRISC 1000 architecture provides two dedicated instructions that together perform
atomic read-modify-write operation.

[.lwa D, I(rA)
l.swa I(rA), rB

Instruction |.Iwa loads single word from memory, creating a reservation for a subsequent
conditional store operation. Specia register, invisible to the programmer, is used to hold
address of the memory location, which is used in the atomic read-modify-write operation.
Reservation for subsequent |.swa is cancelled if another master read the same memory
location (snoop hit), another l.lwa is executed or if the software explicitly clears
reservation register.

If reservation is still valid when corresponding |.swa is executed, |.swa stores general-
purpose register rB into the memory. If reservation was cancelled, |.swa is executed as no
operation.

11 Memory Management

This chapter describes the virtual memory and access protection mechanism of memory
management of OpenRISC 1000 architecture.

Note that this chapter describes address trandation mechanism from the perspective of
the programming model. As such, it describes the structure of the page tables, the MMU
conditions that cause MMU related exceptions and the MMU registers. The hardware
implementation details that are invisible to the OpenRISC 1000 programming model,
such as MMU organization and TLB gize, are not contained in the architectural
definition.

11.1 MMU Features

OpenRISC 1000 memory management unit includes the following principal features:

Support for effective address (EA) of 32 bits and 64 bits
Support for implementation specific size of physical address spaces up to 35 address
bits (32 GByte)
Three different page sizes.
Level 0 pages (32 Ghyte; only with 64-bit EA)
Level 1 pages (16 MByte)
Level 2 pages (8 Kbyte)
Address trandation using one-, two- or three-level page tables
Powerful page based access protection with support for demand-paged virtual
memory
Support for smultaneous multi-threading (SMT)

11.2 MMU Overview

The primary functions of the MMU in an OpenRISC 1000 processor are to trandate
effective addresses to physical addresses for memory accesses. In addition, the MMU
provides various levels of access protection on a page basis. Note that this chapter
describes conceptual model of OpenRISC 1000 MMU and implementations may differ in
the specific hardware used to implement the MMU model.

Two genera types of accesses generated by OpenRISC 1000 processors require address
trandation — instruction accesses generated by fetch unit, and data accesses generated by
load and store unit. Generally, the address trandation mechanism is defined in terms of

page tables used by OpenRISC 1000 processors to locate the effective to physical address
mapping for instruction and data accesses.

The definition of page table data structures provides significant flexibility for the
implementation of performance enhancement features in a wide range of processors.
Therefore, the performance enhancements used to the page table information on-chip
vary from implementation to implementation.

Trandation lookaside buffers (TLBs) are commonly implemented in OpenRISC 1000
processors to keep recently-used page address trandlations on-chip. Although their exact
implementation is not specified, the general concepts that are pertinent to the system
software are described.

31 VMPS VMPS-1 0 CPU Core
. X Page Index Page Offset
32-Bit Effective Address (32-VMPS bits) (VMPS bits)
/ I
3 0 ’ '
4-Bit Context ID e | \
(4 bits)
4 | \
| \ \
T))
\ \ \
\] T
I I \ MMU
35 W 32 = \'4 vmpsvmps-1\/ 0
36-B|t Virtual AddreSS CID Page Index Page Offset
(4 bits) (32-VMPS bits) (VMPS bits)
| Virtual Page Number (VPN) | //
T J ________ 1 l
i ! l
! XTLB 1
i i I
b S | |
\ |
\ |
\ |
N /
) |
PADDR_WIDTH-1 N VMPSVMPS-1 0 External I/F
PADDR WIDTH-BIit Physical Page Number Page Offset
Physi _| Add (PADDR_WIDTH-VMPS bit) (VMPS bit)
ysica ress

Figure 11-1. Trandation of Effectiveto Physical Address— Simplified block diagram
for 32-bit processor implementations

The MMU, together with the exception processing mechanism, provides the necessary
support for the operating system to implement a paged virtua memory environment and
for enforcing protection of designated memory areas.

11.3 MMU Exceptions

To complete any memory access, the effective address must be trandated to a physical
address. An MMU exception occurs if thistrandation fails.

TLB miss exceptions can happen only on OpenRISC 1000 processor implementations
that do TLB reload in software.

The page fault exceptions that are caused by missing PTE in page table or page access
protection can happen only on OpenRISC 1000 processor implementations that do TLB
reload in hardware.

EXCEPTION | VECTOR CAUSING CONDITIONS
NAME OFFSET
Data Page 0x300 No matching PTE found in page tables or page protection
Fault violation for |oad/store operations.
Instruction 0x400 No matching PTE found in page tables or page protection
Page Fault violation for instruction fetch.
DTLB Miss 0x900 No matching entry in DTLB.
ITLB Miss OxA00 | No matching entry in TLB.

Table 11-1. MM U Exceptions

The state saved by the processor for each of the exceptions in Table 9-2 contains
information that identifies the address of the falling instruction. Refer to chapter
“Exception Model” on page 271 for more detailed descripti on of exception processing.

11.4 MMU Special-Purpose Registers

Table 11-2 summarizes the registers that the operating system uses to program the MMU.
These registers are 32-bit special-purpose supervisor-level registers accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode.

GRP | REG | REGNAME USER SUPV DESCRIPTION
MODE MODE
1 | 0-255 | DTLBMRO- - R/W Data TLB Match Registers
DTLBMR255
1 256- | DTLBTRO- - R/W Data TLB Trandate
511 | DTLBTR255 Registers

1 512 | DMMUCR - R/W DataMMU Control
Register
1 513 | DMMUPR - R/W DataMMU Protection
Register
1 514 | DTLBEIR - w Data TLB Entry Invalidate
Register
2 0-255 | ITLBMRO- - R/W Instruction TLB Match
ITLBMR255 Registers
2 256- | ITLBTRO- - R/W Instruction TLB Trandate
511 | ITLBTR255 Registers
2 512 | IMMUCR - R/W Instruction MMU Control
Register
2 513 | IMMUPR - R/W Instruction MMU Protection
Register
2 514 | ITLBEIR - R/W Instruction TLB Entry
Invalidate Register

Table 11-2. List of MM U Special-Pur pose Registers

As TLBs are noncoherent caches of PTEs, software that changes the page tables in any
way must perform the appropriate TLB invalidate operations to keep the on-chip TLBs
coherent with respect to the page tablesin memory.

11.4.1 Data MMU Control Register (DMMUCR)

The DMMUC register is a specia-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. It isa 32 bits wide register.

It provides general control of the DMMU.

BIT 31-10 o-1 0
[dentifier PTBP Reserved DTF
Reset 0 X 0
R/W R/W R R/W
DTF DTLB Flush

0 DTLB ready for operation

1 DTLB flush request/status
PTBP Page Table Base Pointer

N 22-hit pointer to the base of page directory/table

Table 11-3. DMMUCR Fidd Descriptions

PTB field in DMMUCR is required only in implementations with hardware PTE reload
support. Implementations that use software TLB reload are not required to implement this

field because page table base pointer is stored in a TLB miss exception handler's
variable.
DTF isoptiona and when implemented it flushes entire DTLB.

11.4.2 Data MMU Protection Register (DMMUPR)

The DMMUP register is a special-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. It is a 32 bits wide register.

It defines 7 protection groups indexed by PPI fieldsin PTEsand XTLBTRs.

BIT 31-28 27 26 25 24
[dentifier Reserved UWE7 | URE7 | SWE7 | SRE7Y
Reset X 0 0 0 0
R/W R R/W R/W R/W R/W
BIT 23 22 21 20 19 18 17 16
Identifier | UWE6 | URE6 | SWE6 | SRE6 | UWE5 | URE5 | SWE5 | SRES
Reset 0 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
BIT 15 14 13 12 11 10 9 8
[dentifier UWE4 | URE4 | SWE4 | SRE4 | UWE3 | URE3 | SWE3 | SRE3
Reset 0 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
BIT 7 6 5 4 3 2 1 0
[dentifier UWE2 | URE2 | SWE2 | SRE2 | UWEl1l | URE1 | SWEl1l | SRE1
Reset 0 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
SREX Supervisor Read Enable x

0 Load operation in supervisor mode not permitted

1 Load operation in supervisor mode permitted
SWEX Supervisor Write Enable x

0 Store operation in supervisor mode not permitted

1 Store operation in supervisor mode permitted
UREX User Read Enable x

0 Load operation in user mode not permitted

1 Load operation in user mode permitted
UWEX User Write Enable x

0 Store operation in user mode not permitted

1 Store operation in user mode permitted

11.4.3 Instruction MMU Control Register IMMUCR)

Table 11-4. DMMUPR Field Descriptions

The IMMUC register is a specia-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. It isa 32 bits wide register.

It provides genera control of the IMMU.

BIT 31-10 o-1 0
Identifier PTBP Reserved ITF
Reset 0 X 0
R/W R/W R R/W
ITF ITLB Flush

O ITLB ready for operation

1 ITLB flush request/status
PTBP Page Table Base Pointer

N 22-hit pointer to the base of page directory/table

Table 11-5. IMMUCR Fidd Descriptions

PTB field in xXMMUCRL1 is required only in implementations with hardware PTE reload
support. Implementations that use software TLB reload are not required to implement this
field because page table base pointer is stored in a TLB miss exception handler's

variable.

ITF isoptional and when implemented it flushes entire ITLB.

11.4.4 Instruction MMU Protection Register (IMMUPR)

The IMMUP register is a specia-purpose supervisor-level register accessible with
|.mtspr/l.mfspr instruction pair only in supervisor mode. It isa 32 bits wide register.

It defines 7 protection groups indexed by PPI fieldsin PTEsand XTLBTRs.

BIT 31-14 13 12 11 10 9 8
|dentifier Reserved UXE7 | SXE7 | UXE6 | SXE6 | UXE5 | SXE5
Reset X 0 0 0 0 0 0
RIW R RW | RW | RW | RW | RW | RW
BIT 7 6 5 4 3 2 1 0
Identifier | UXE4 | SXE4 | UXE3 | SXE3 | UXE2 | SXE2 | UXEL | SXE1L
Reset 0 0 0 0 0 0 0 0

R/W R/IW R/W R/W R/W R/W R/W R/W R/W

SXEX Supervisor Execute Enable x
O Instruction fetch in supervisor mode not permitted
1 Ingtruction fetch in supervisor mode permi tted
UXEx User Execute Enable x
O Instruction fetch in user mode not permitted
1 Ingtruction fetch in user mode permitted

Table 11-6. IMMUPR Field Descriptions

11.4.5 Instruction/Data TLB Entry Invalidate Registers
(XTLBEIR)

The instruction/data TLB entry invalidate registers are specia-purpose registers
accessible with [.mtspr/l.mfspr instruction pair only in supervisor mode. They are 32 bits
wide register in 32-bit implementation and 64 bits wide in 64-bit implementation.

The XTLBEIR is written with the effective address. Corresponding XTLB entry is
invalidated in the local processor.

BIT 31-0
Identifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets TLB entry ingde TLB

Table 11-7. xTLBEIR Field Descriptions

11.4.6 Instruction/Data Translation L ookaside Buffer M atch
Registers (XTLBM RO-XxTL BM R255)

The XTLBM registers are specia-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. They are 32 bits wide registers.

Together with XTLBT registers they cache trandation entries used for trandating virtual
to physical address. Virtua address is formed from EA generated during instruction fetch
or load/store operation, and SR[CID] field. XTLBM registers hold a tag that is compared
with the current virtual address generated by the CPU core. Together with the xTLBT
registers and match logic they form a core of the xMMU.

0-N Number of the virtual frame that must match EA

BIT 31-10
Identifier VPN
Reset X
R/W R/W
BIT 9-5 5-2 1-0
Identifier Reserved CID PS
Reset X 0 0
R/W R R/W R/W
PS Page Size

00 This TLB entry trandates 8K B pages

01 This TLB entry trandates 16MB pages

10 Reserved

11 Reserved
CID Context ID

0-15 TLB entry trandates for CID
VPN Virtua Page Number

Table 11-8. xTLBMR Field Descriptions

The CID hits can be hardwired to zero if implementation does not support fast context
switching and SR[CID] hits.

11.4.7 Instruction/Data Translation L ookaside Buffer
Translate Registers (XTLBTRO-xTLBTR255)

The XTLBT registers are special-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. They are 32 bits wide registers.

Together with XTLBM registers they cache trandation entries used for trandating virtual
to physical address. Virtua address is formed from EA generated during instruction fetch
or load/store operation, and SR[CID] field. Together with the XTLBM registers and
match logic they form a core of the xXMMU.

BIT 31-10 9
Identifier PPN Reserved
Reset X X
R/W R/W -

BIT 8-6 5 4 3 2 1 0
|dentifier PPI D A WOM WBC Cl CC

Reset X X X X X X
R/W R/W R/W R/W R/W R/W R/W R/W
CcC Cache Coherency
0 Data cache coherency is not enforced for this page
1 Data cache coherency is enforced for this page
Cl Cache Inhibit
0 Cacheis enabled for this page
1 Cache is disabled for this page
WBC Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page
WOM Weakly-Ordered Memory
0 Strongly-ordered memory mode for this page
1 Weakly-ordered memory model for this page
A Accessed
0 Page was not accessed
1 Page was accessed
D Dirty
0 Page was not modified
1 Page was modified
PPI Page Protection Index
OTLB entry isinvalid
1-7 Selects agroup of six bitsfrom a set of seven protection attribute
groupsin xMMUCR
PPN Physical Page Number

0-N Number of the physical frame in memory

Table 11-9. xTLBTR Field Descriptions

11.5 Address Trandation M echanism in 32-bit

| mplementations

Memory in OpenRISC 1000 with 32-hit effective address (EA) is divided into level 1 and
level 2 pages. Trandation is therefore based on two-level page table. However for virtual
memory areas that do not need the smallest 8KB page granularity, only one level can be

used.

Virtual Address
Space
2" pytes

Truncated
Effective Address
Space per Process

2"32

bytes

Effective Address

Space per Process Level 1 Page

Level 1 Page
224 pytes

Level 2 Page

Level 2 Page
2"13 bytes

Figure 11-2. Memory Divided Into L1 and L 2 pages

The first step in page address trandation is to append current SR[CID] bits as most
significant bits to the 32-bit effective address and combined them into 36-bit virtual
address. The virtual address is then used to locate the correct page table entry (PTE) in
the page tables in the memory. The physical page number is then extracted from the PTE
and used in the physical address. Note that for increased performance, most processors
implement on-chip trandation lookaside buffers (TLBS) to cache copies of the recently-

used PTEs.

35

31 24 23 13 12 0

Context ID Page Index Level 1 Page Index Level 2 Page Offset
(4 bits) (8 bits) (11 bits) (13 bits)
Virtual Page Number (VPN)
A
ol +)
L1 Page Directory
N v
0
+
L2 Page Table
Page Table PTE1 0
Base Address
depending on
current CID PTE2
255
2047
34 \ 13 12 \ 0
Physical Page Number Page Offset
(22 bits) (13 bits)

Figure 11-3. Address Trandation Mechanism using Two-L evel Page Table

Figure 11-3 shows an overview of the two-level page table trandation of avirtual address

to phy

sical address:
Bits 35..32 of the virtual address select the page tables for the current context
(process)
Bits 31..24 of the virtual address correspond to the level 1 page number within
current context’s virtual space. The L1 page index is used to index L1 page
directory and to retrieve PTE from it, or together with the L2 page index to match
for the PTE in on-chip TLBs.
Bits 23..13 of the virtual address correspond to the level 2 page number within
current context’s virtual space. The L2 page index is used to index L2 page table
and to retrieve PTE from it, or together with the L1 page index to match for the
PTE in on-chip TLBs.
Bits 12..0 of the virtual address are the byte offset within the page; these are
concatenated with the PPN field of the PTE to form the physical address used to
access memory

OpenRISC 1000 two-level page table trandation also allows implementation of segments
with only one level of trandation. This greatly reduces memory requirements for the page
tables since large areas of unused virtual address space can be covered only by level 1
PTEs.

35 31 24 23 0

Context ID Page Index Level 1 Page Offset
(4 bits) (8 bits) (24 bits)

Virtual Page Number (VPN)

\
ol +)
'U L1 Page Table

Page Table PTE1
Base Address

depending on

current CID

255

34 V 23 A 0

Truncated Physical Page Number Page Offset
(11 bits) (24 bits)

Figure 11-4. Address Trandation Mechanism using only L1 Page Table

Figure 11-4 shows an overview of the one-level page table trandation of avirtual address
to physical address:
- Bits 35..32 of the virtual address select the page tables for the current context
(process)
Bits 31..24 of the virtual address correspond to the level 1 page number within
current context’s virtual space. The L1 page index is used to index L1 page table
and to retrieve PTE from it, or to match for the PTE in on-chip TLBs.
Bits 23..0 of the virtua address are the byte offset within the page; these are
concatenated with the truncated PPN field of the PTE to form the physical address
used to access memory

11.6 Address Trandation M echanism in 64-bit
| mplementations

Memory in OpenRISC 1000 with 64-bit effective address (EA) is divided into level 0O,
level 1 and level 2 pages. Trandation is therefore based on three-level page table.
However for virtual memory areas that do not need the smallest page granularity of 8KB,
two level trandation can be used.

Virtual Address

Space
2"%% pytes
Truncated
Effective
Address Space
per Process /1
2"4%pytes /
! Level 0 Page
2"%5 pytes
K Level 1 Page
/ 2M24 bytes
Effective
Level 0 Page Level 1 Page Le\iel 2 Page
Address Space Level 2 Page 2" pytes

per Process

Figure 11-5. Memory Divided Into LO, L1 and L 2 pages

The first step in page address trandation is truncation of the 64-bit effective address into
46-bit address. Then the current SR[CID] bits are appended as most significant bits. The
50-bit virtual address is then used to locate the correct page table entry (PTE) in the page
tables in the memory. The physica page number is then extracted from the PTE and used
in the physical address. Note that for increased performance, most processors implement
on-chip tranglation lookaside buffers (TLBS) to cache copies of the recently-used PTES.

49 45 35 34 24 23 13 12
Context ID Page Index Level 1 Page Index Level 2 Page Index Level 3 Page Offset
(4 bits) (11 bits) (11 bits) (13 bits)
Virtual Page|Number (VPN) |
LO Page Table
0 L1 Page Table
Y
0
+ L2 Page Table
Page Table PTEO
Base Address 0
. PTE1
depending on
current CID
PTE2
2047
2047
2047
\ 13 12 { 0

Physical Page Number
(22 bits)

Page Offset
(13 bits)

Figure 11-6. Address Trandation M echanism using Three-L evel Page Table

Figure 11-6 shows an overview of the three-level page table trandation of a virtua
address to physical address:

Bits 49..46 of the virtual address select the page tables for the current context
(process)

Bits 45..35 of the virtual address correspond to the level O page number within
current context’s virtual space. The LO page index is used to index LO page
directory and to retrieve PTE from it, or together with the L1 and L2 page indexes
to match for the PTE in on-chip TLBs.

Bits 34..24 of the virtual address correspond to the level 1 page number within
current context’s virtual space. The L1 page index is used to index L1 page
directory and to retrieve PTE from it, or together with the LO and L2 page index
to match for the PTE in on-chip TLBs.

Bits 23..13 of the virtual address correspond to the level 2 page number within
current context’s virtual space. The L2 page index is used to index L2 page table
and to retrieve PTE from it, or together with the LO and L1 page index to match
for the PTE in on-chip TLBs.

Bits 12..0 of the virtual address are the byte offset within the page; these are
concatenated with the truncated PPN field of the PTE to form the physical address

used to access memory

OpenRISC 1000 three-level page table trandation also alows implementation of large
segments with two levels of trandation. This greatly reduces memory requirements for
the page tables since large areas of unused virtual address space can be covered only by

level 1 PTEs.

49 45 35 34 24 23
Context ID Page Index Level 1 Page Index Level 2 Page Offset
(4 bits) (11 bits) (11 bits) (24 bits)

| Virtual Page Number (VPN) |
LO Page Table
0 L1 Page Table
0
Page Table PTEO
Base Address
. PTE1
depending on
current CID
2047
2047
34 | j 24 23 “ 0
Physical Page Number Page Offset
(11 bits) (24 bits)

Figure 11-7. Address Trandation Mechanism using Two-L evel Page Table

Figure 11-7 shows an overview of the two-level page table trandation of avirtual address
to physical address:
- Bits 49..46 of the virtual address select the page tables for the current context
(process)
Bits 45..35 of the virtual address correspond to the level O page number within
current context’s virtual space. The LO page index is used to index LO page
directory and to retrieve PTE from it, or together with the L1 page index to match
for the PTE in on-chip TLBs.

Bits 34..24 of the virtual address correspond to the level 1 page number within
current context’s virtual space. The L1 page index is used to index L1 page table
and to retrieve PTE from it, or together with the LO page index to match for the
PTE in on-chip TLBs.

Bits 23..0 of the virtual address are the byte offset within the page; these are
concatenated with the truncated PPN field of the PTE to form the physical address
used to access memory

11.7 Memory Protection Mechanism

After a virtual address is determined to be within a page covered by the valid PTE, the
access is validated by the memory protection mechanism. If this protection mechanism
prohibits the access, a page fault exception is generated.

The memory protection mechanism allows selectively granting read access, write access
or execute access for both supervisor and user modes. The page protection mechanism
provides protection at al page level granularities.

Protection attribute Meaning

DMMUPR[SREX] | Enableload operationsin supervisor mode to the page.

DMMUPR[SWEX] | Enable store operations in supervisor mode to the page.
IMMUPR[SXEX] | Enable execution in supervisor mode of the page.
DMMUPR[UREX] | Enable load operationsin user mode to the page.

DMMUPR[UWEX] | Enable store operations in user mode to the page.
IMMUPR[UXEX] | Enable execution in user mode of the page.

Table 11-10. Protection Attributes

Table 11-10 lists page protection attributes defined in MMU protection registers. For the
individual page appropriate strategy out of seven possible strategies programmed in
MMU protection registersis selected with the PPI field of the PTE.

SWE

\ 4

DMMUPR >
Protection groups SRE

URE

UWE

PPI

Figure 11-8. Selection of Page Protection Attributesfor Data Accesses

SXE

IMMUPR >
Protection groups

UXE

PPI

Figure 11-9. Selection of Page Protection Attributesfor Instruction Fetch Accesses

11.8 Page Table Entry Definition

Page table entries (PTES) are generated and placed in page tables in memory by the
operating system. PTE is 32 hits wide and is the same for 32-bit and 64-bit OpenRISC
1000 processor implementations.

PTE trandates virtual memory area into physica memory area. How much virtua
memory is trandated depends on which level PTE resides. PTES are either in page
directories with L bit zeroed or in page tables with L bit set. PTEs in page directories
point to next level page directory or to final page table that containts PTEs for actua
address trangl ation.

31

10 9 7 6 5 4 3 2 1

0

Physical Page Number PP Index
L D A WOM [wBC Cl
(22 bits) (3 bits)

ccC

Figure 11-10. Page Table Entry Format

CC

Cache Coherency
0 Data cache coherency is not enforced for this page
1 Data cache coherency is enforced for this page

Cl

Cache Inhibit
0 Cacheis enabled for this page
1 Cache isdisabled for this page

WBC

Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page

WOM

Weakly-Ordered Memory
0 Strongly-ordered memory mode! for this page
1 Weakly-ordered memory model for this page

Accessed
0 Page was not accessed
1 Page was accessed

Dirty
0 Page was not modified
1 Page was modified

PPI

Page Protection Index

OPTEisinvalid

1-7 Selects agroup of six bits from a set of seven protection attribute
groupsin XMMUCR

Last
0 PTE from page directory pointing to next page directory/table
1 Last PTE inalinked form of PTESs (describing the actual page)

PPN

Physical Page Number
0-N Number of the physical frame in memory

Table 11-11. PTE Field Descriptions

11.9 Page Table Search Operation

Implementation may choose to implement page table search operation in hardware or in
software. For all page table search operations data addresses are untrandated (effective
and physical base address of the page table are the same).

When implemented in software, two TLB miss exceptions are used to handle TLB reload
operations. Also software is responsible for maintaining accessed and dirty bits in the
page tables.

11.10 PageHistory Recording

Accessed (A) bit and dirty (D) bit reside in each PTE and keep information about the
history of the page. The operating system uses this information to determine which areas
of the main memory to swap to the disk and which areas of the memory to load back to
the main memory (demand-paging).

Accessed (A) bit resides both in the PTE in page table and in the copy of PTE in the
TLB. Every time when page is accessed by a load, store or instruction fetch operation,
accessed bit is set.

If TLB reload is performed in software, then software must also write back the accessed
bit from the TLB to the page table.

In cases when access operation to the page fails, it is not defined whether accessed bit
should be set or not. Since accessed bit is merely a hint to the operating system, it is up to
the implementation to decide.

It is up to the operating system to determine when to explicitly clear the accessed bit for a
given page.

Dirty (D) hit resides both in the PTE in page table and in the copy of PTE in the TLB.
Every time when page is modified by a store operation, dirty bit is set.

If TLB reload is performed in software, then software must also write back the dirty bit
from the TLB to the page table.

In cases when access operation to the page fails, it is not defined whether dirty bit should
be set or not. Since dirty bit is merely a hint to the operating system, it is up to the
implementation to decide. However implementation or TLB reload software must check
whether page is actually writable before setting dirty bit.

It is up to the operating system to determine when to explicitly clear the dirty bit for a
given page.

11.11 Page Table Updates

Updates to the page tables include operatins like adding PTE, deleting PTE and
modifying PTE. On multiprocessor systems exclusive access to the page table must be
assured beforeit is modified.

TLBs are noncoherent caches of the page tables and must be maintained accordingly.
Explicit software syncronization between TLB and page tables is required so that page
tables and TLBs remain coherent.

Since processor reloads PTEs even during update of the page table, special care must be
taken when updating page tables so that the processor does not accidently use half
modified page table entries.

12 Cache Moded and Cache

Coherency

This chapter describes the OpenRISC 1000 cache model and architectural control to
maintain cache coherency in multiprocessor environment.

Note that this chapter describes cache model and cache coherency mechanism from the
perspective of the programming model. As such, it describes the cache management
principles, the cache coherency mechanisms and the cache control registers. The
hardware implementation details that are invisible to the OpenRISC 1000 programming
model, such as cache organization and size, are not contained in the architectural
definition.

The function of the cache management registers depends on the implementation of the
cache(s) and the setting of the memory/cache access attributes. For a program to execute
properly on al OpenRISC 1000 processor implementations, software should assume
Harvard cache model. In cases where a processor is implemented without a cache, the
architecture guarantees that writing to cache registers will not halt execution. For
example a processor without cache should ssmply ignore writes to cache management
registers. A processor with Stanford cache model should simply ignore writes to
instruction cache management registers. In this manner, programs written for separate
instruction and data caches will run on all compliant implementations.

12.1 Cache Special-Purpose Registers

Table 12-1 summarizes the registers that the operating system uses to manage the
cache(s).

For implementations that have unified cache, registers that control data and instruction
cache are merged and available at the same time both as data and intruction cache
registers.

GRP | REG | REG USER | SUPV | DESCRIPTION

NAME MODE | MODE

3 0 DCCR |- R/W Data Cache Control Register

3 1 DCBPR | W W Data Cache Block Prefetch Register

3 2 DCBFR | W W Data Cache Block Flush Register

3 3 DCBIR | — W Data Cache Block Invalidate Register
3 4 DCBWR | W W Data Cache Block Write-back Register
3 5 DCBLR | W W Data Cache Block Lock Register

4 0 ICCR - R/W Instruction Cache Control Register

4 1 ICBPR | W W Instruction Cache Block PreFetch Register
4 3 ICBIR w W Instruction Cache Block Invalidate Register
4 5 ICBLR |W wW Instruction Cache Block Lock Register

Table 12-1. Cache Registers

12.1.1 Data Cache Control Register

The data cache control register is special-purpose register accessible with I.mtspr/l.mfspr
instruction pair only in supervisor mode. It is 32 bits wide register.

The DCCR controls the operation of the data cache.

BIT 31-8 7-0
Identifier Reserved EW
Reset X 0
R/W R R/W
EW Enable Ways

0000 0000 All ways disabled/locked

1111 1111 All ways enabled/unlocked

Table 12-2. DCCR

Field Descriptions

12.1.2 Instruction Cache Control Register

The instruction cache control register is special-purpose register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide register.

The ICCR controls the operation of the instruction cache.

BIT 31-8 7-0
Identifier Reserved EW
Reset X 0
R/W R R/W
EW Enable Ways

0000 0000 All ways disabled/locked

1111 1111 All ways enabled/unlocked

Table 12-3. ICCR

Field Descriptions

12.2 Cache M anagement

This section describes special-purpose cache management registers for both data and
instruction caches.

Memory accesses caused by cache management are not recorded (unlike load or store
instructions) and cannot invoke any exception.

Instruction caches do not need to be coherent with the memory or caches of other
processors. Software must make instruction cache coherent with modified instructions in
the memory. Typica way to accomplish this:

1. Datacache block write-back (update of the memory)

2. l.sync (wait for update to finish)

3. Ingruction cache block invalidate (clear instruction cache block)

4. Flush pipeline

12.2.1 Data Cache Block Prefetch (optional)

The data cache block prefetch register is optional specia-purpose register accessible with
[.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32 bits wide
register in 32-bit implementation and 64 bits wide in 64-bit implementation.
Implementation may choose not to implement this register and ignore all writes to this
register.

The DCBPR is written with the effective address and corresponding block from memory
is prefetched into the cache. Memory accesses are not recorded (unlike load or store
instructions) and cannot invoke any exception.

Data cache block prefetch is used strictly for improving performance.

BIT 31-0
Identifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-4. DCBPR Fidld Descriptions

12.2.2 Data Cache Block Flush

The data cache block flush register is special-purpose register accessible with
[.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32 bits wide
register in 32-bit implementation and 64 bits wide in 64-bit implementation.

The DCBFR is written with the effective address. If coherency is required then
corresponding:
- Unmodified data cache block isinvalidated in all processors.
Modified data cache block is written back to the memory and invalidated in all
processors.
Missing data cache block in the local processor causes that modified data cache
block in other processor is written back to the memory and invalidated. If other
processors have unmodified data cache block, it is just invalidated in all
processors.

If coherency is not required then corresponding:
Unmodified data cache block in the local processor isinvalidated.
Modified data cache block is written back to the memory and invalidated in local
processor.
Missing cache block in the local processor does not cause any action.

BIT 31-0
Identifier EA
Reset 0
R/W Write only
EA Effective Address

EA that targets byte inside cache block

Table 12-5. DCBFR Field Descriptions

12.2.3 Data Cache Block Invalidate

The data cache block invalidate register is special-purpose register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide register in 32-
bit implementation and 64 bits wide in 64-bit implementation.

The DCBIR is written with the effective address. If coherency is required then
corresponding:
Unmodified data cache block isinvalidated in al processors.
Modified data cache block isinvalidated in al processors.
Missing data cache block in the local processor causes that data cache blocks in
other processors are invalidated.

If coherency is not required then corresponding:
Unmodified data cache block in the local processor isinvalidated.

Modified data cache block in the local processor isinvalidated.
Missing cache block in the local processor does not cause any action.

BIT 31-0
[dentifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-6. DCBIR Field Descriptions

12.2.4 Data Cache Block Write-Back

The data cache block write-back register is special-purpose register accessible with
[.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32 bits wide

register in 32-bit implementation and 64 bits wide in 64-bit implementation.

The DCBWR is written with the effective address. If coherency is required then
corresponding data cache block in any of the processor is written back to memory if it
was modified. If coherency is not required then corresponding data cache block in the

local processor iswritten back to memory if it was modified.

BIT 31-0
Identifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-7. DCBWR Fidd Descriptions

12.2.5 Data Cache Block Lock (optional)

The data cache block lock register is optional special-purpose register accessible with
[.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32 bits wide

register in 32-bit implementation and 64 bits wide in 64-bit implementation.

The DCBLR is written with the effective address. Corresponding data cache block in the

local processor islocked.

If al blocks of the same set in al cache ways are locked, then the cache refill may

automatically unlock the least-recently used block.

BIT 31-0
Identifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-8. DCBLR Field Descriptions

12.2.6 Instruction Cache Block Prefetch (optional)

The ingtruction cache block prefetch register is optional special-purpose register
accessible with [.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32
bits wide register in 32-bit implementation and 64 bits wide in 64-bit implementation.
Implementation may choose not to implement this register and ignore all writes to this
register.

The ICBPR is written with the effective address and corresponding block from memory
is prefetched into the instruction cache.
Instruction cache block prefetch is used strictly for improving performance.

BIT 31-0
Identifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-9. ICBPR Fidld Descriptions

12.2.7 Instruction Cache Block Invalidate

The instruction cache block invalidate register is special-purpose register accessible with
[.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32 bits wide
register in 32-bit implementation and 64 bits wide in 64-bit implementation.

The ICBIR is written with the effective address. If coherency is required then
corresponding instruction cache blocks in all processors are invalidated. If coherency is
not required then corresponding instruction cache block is invalidated in the local
Pprocessor.

BIT 31-0
[dentifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-10. ICBIR Fidld Descriptions

12.2.8 Instruction Cache Block L ock (optional)

The instruction cache block lock register is optional special-purpose register accessible
with |.mtspr/l.mfspr instruction pair in both user and supervisor mode. It is 32 bits wide
register in 32-bit implementation and 64 bits wide in 64-bit implementation.

The ICBLR is written with the effective address. Corresponding instruction cache block
in the local processor islocked.

If al blocks of the same set in al cache ways are locked, then the cache refill may
automatically unlock the least-recently used block.

BIT 31-0
Identifier EA
Reset 0
R/W Write Only
EA Effective Address

EA that targets byte inside cache block

Table 12-11. ICBLR Field Descriptions

12.3 Cache/Memory Coherency

The primary role of the cache coherency is to synchronize cache content with other
caches and with the memory and to provide the same image of the memory to all devices
using the memory.

Architecture provides several features to implement cache coherency. In systems that do
not provide cache coherency with the PTE attributes because they do not implement
memory management unit, it can be provided through explicit cache management.
Cache coherency in systems with virtual memory can be provided on a page-by-page
basiswith PTE attributes. Attributes are:

Cache Coherent (CC Attribute)

Caching-Inhibited (CI Attribute)

Write-Back Cache (WBC Attribute)

When the memory/cache attributes are changed, it is imperative that the cache contents
should reflect the new attribute settings. This usually means that cache blocks must be
flushed or invalidated.

12.3.1 Pages Designated as Cache Coherent Pages

This attribute improves performance of the systems where cache coherency is performed
with hardware and is relatively sow. Memory pages that do not need cache coherency
are marked with CC=0 and only memory pages that need cache coherency are marked
with CC=1. When an access to shared resource is made, local processor will assert some
kind of cache coherency signa and other processors will respond if they have a copy of
the target location in their caches.

To improve performance of uniprocessor systems, memory pages should not be
designated as CC=1.

12.3.2 Pages Designated as Caching-Inhibited Pages

Memory accesses to memory pages designated with Cl=1 are aways performed directly
into the main memory, bypassing al caches. Memory pages designated with Cl=1 are not
loaded into the cache and the target content should never be available in the cache. To
prevent any accident copy of the target location in the cache, whenever operating system
sets memory page to be caching-inhibited, it should flush the corresponding cache blocks.

Multiple accesses may be merged into combined accesses except when individua
accesses are separated by |.msync or |.sync.

12.3.3 Pages Designated as Write-Back Cache Pages

Store accesses to memory pages designated with WBC=0 are performed both in data
cache and memory. If system uses multilevel hierarchy caches, store must be performed
to at least the depth in the memory hierarchy seen by other processors and devices.
Multiple stores may be merged into combined stores except when individual stores are
separated by |.msync or l.sync. Store operation may cause any part of the cache block to
be written back to main memory.

Store accesses to memory pages designated with WBC=1 are performed only to local
data cache. Data from local data cache can be copied to other caches and to main memory
when copy-back operation is required. WBC=1 improves system performance, however

requires cache snooping hardware support in data cache controllers to gurantee cache
coherency.

13 Debug Unit

This chapter describes the OpenRISC 1000 debug facility. Debug unit assists software
developers to debug their systems. It provides support for watchpoints, breakpoints and
program-flow control registers.

Watchpoints and breakpoint are events triggered by program- or data-flow matching the
conditions programmed in the debug registers. Breakpoint unlike watchpoints aso
suspends execution of the current programflow and starts breakpoint exception.
Breakpoint isaresult of the watchpoints.

13.1 Features

OpenRISC 1000 architecture defines eight sets of debug registers. Additional debug
register sets can be defined by the implementation itself. Debug unit is optional and its
implementation is specified by the UPR[DUP] hit.

Optiona implementation

Eight architecture defined sets of debug value/compare registers

Match signed/unsigned conditions on instruction fetch EA, load/store EA and
load/store data

Combining match conditions for complex watchpoints

Watchpoints can generate a breakpoint

Counting watchpoints for generation of additional watchpoints

DVR/DCR pairs are used to compare instruction fetch or load/store EA and load/store
data to the value stored in DVRs. Matches can be combined into more complex matches
and used for generation of watchpoints. Watchpoints can be counted and reported as
breakpoints.

CPU DVRO/DCR
A DVR7/DCR7 DMR
IF EA
LSEA Match O Watchpoints
? WP >
LS data - ach7/| Breakpoints
! |
v S BP
Instruction Qache
4 \ 4
Data Cache DSR DRR DIR

Figure 13-1. Block Diagram of Debug Support

13.2 Debug Value Registers (DVRO-DVRY7)

The debug value registers are special-purpose supervisor-level registers accessible with
I.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user mode is possible,

if itisenabled in PCMRO[UMRA]. They are 32 bits wide registers.

The DVRs are programmed with the watchpoint/breakpoint addresses or data by the
resident debug software or by the development interface. Their value is compared to the
fetch or load/store EA or to the load/store data according to the corresponding DCR.

Based on the settings of the corresponding DCR a watchpoint or breakpoint is generated.

BIT 31-0
Identifier VALUE
Reset 0
R/W R/W

| VALUE | Watchpoint/Breakpoint Address/Data

Table 13-1. DVR Fidld Descriptions

13.3 Debug Control Registers (DCRO-DCR7)

The debug control registers are special-purpose supervisor-level registers accessible with
[.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user mode is possible,

if itisenabled in PCMRO[UMRA]. They are 32 bits wide registers.

The DCRs are programmed with the watchpoint/breakpoint settings that define how
DVRs are compared to the instruction fetch or load/store EA or to the load/store data.

BIT

31-8

7-5

3-1

0

Identifier

Reserved

CT

CC

DP

Reset

X

0

4
SC
0

0

0

R/W

R

R/W

R/W

R/W

R/W

DP

DVR/DCR Present

0 Corresponding DVR/DCR pair is not present

1 Corresponding DVR/DCR pair is present

CC

Compare Condition

000 Masked

001 Equal

010 Less than

011 Lessthan or equal
100 Greater than

101 Greater than or equal
110 Not equal

111 Reserved

Signed Comparison

0 Compare using unsigned integers

1 Compare using signed integers

CT

Compare To

000 Comparison disabled
001 Ingtruction fetch EA
010 Load EA

011 Store EA

100 Load data

101 Store data

110 Reserved

111 Reserved

13.4 Debug Mode Register 1 (DMR1)

Table 13-2. DCR Fidld Descriptions

The debug mode register 1 is special-purpose supervisor-level register accessible with
|.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user mode is possible,
if itisenabled in PCMRO[UMRA]. It is 32 bits wide register.

The DMRL is programmed with the watchpoint/breakpoint settings that define how
DVR/DCR pairs operate and is set by the resident debug software or by the development

interface.

BIT

31-25

24

23

22

21-20

19-18

17-16

Identifier

Reserved

DXFW

BT

ST

CW10

CW9

Cw8

Reset

X

0

0

0

0

0

0

R/W

R

R/W

R/W

R/W

R/W

R/W

R/W

BIT

15-14

13-12

11-10

9-8

7-6

54

3-2

1-0

Identifier

CWv

CW6

CW5

Cw4

CW3

CW2

Cwl1

CWO0

Reset 0 0 0 0 0 0 0 0
R/W R/W R/W R/W RW | RIW

CWO0 Chain Watchpoint O

00 Watchpoint 0 = Match O

01 Watchpoint 0 = Match O

10 Watchpoint 0 = Match 0

11 Reserved

Chain Watchpoint 1

00 Watchpoint 1 = Match 1

01 Watchpoint 1 = Match 1 & Watchpoint O
10 Watchpoint 1 = Match 1 | Watchpoint O
11 Reserved

Chain Watchpoint 2

00 Watchpoint 2 = Match 2

01 Watchpoint 2 = Match 2 & Watchpoint 1
10 Watchpoint 2 = Match 2 | Watchpoint 1
11 Reserved

Chain Watchpoint 3

00 Watchpoint 3 = Match 3

01 Watchpoint 3 = Match 3 & Watchpoint 2
10 Watchpoint 3 = Match 3 | Watchpoint 2
11 Reserved

Chain Watchpoint 4

00 Watchpoint 4 = Match 4

01 Watchpoint 4 = Match 4 & Watchpoint 3
10 Watchpoint 4 = Match 4 | Watchpoint 3
11 Reserved

Chain Watchpoint 5

00 Watchpoint 5 = Match 5

01 Watchpoint 5 = Match 5 & Watchpoint 4
10 Watchpoint 5 = Match 5 | Watchpoint 4
11 Reserved

Cwl1

CW2

CW3

Cw4

CW5

Cw6

Chain Watchpoint 6

00 Watchpoint 6 = Match 6

01 Watchpoint 6 = Match 6 & Watchpoint 5
10 Watchpoint 6 = Match 6 | Watchpoint 5
11 Reserved

CW7

Chain Watchpoint 7

00 Watchpoint 7 = Match 7

01 Watchpoint 7 = Match 7 & Watchpoint 6
10 Watchpoint 7 = Match 7 | Watchpoint 6
11 Reserved

CW7

Chain Watchpoint 7

00 Watchpoint 7 = Match 7

01 Watchpoint 7 = Match 7 & Watchpoint 6
10 Watchpoint 7 = Match 7 | Watchpoint 6
11 Reserved

CwW8

Chain Watchpoint 8

00 Watchpoint 8 = Watchpoint counter O match

01 Watchpoint 8 = Watchpoint counter 0 match & Watchpoint 7
10 Watchpoint 8 = Watchpoint counter O match | Watchpoint 7
11 Reserved

CW9

Chain Watchpoint 9

00 Watchpoint 9 = Watchpoint counter 1 match

01 Watchpoint 9 = Watchpoint counter 1 match & Watchpoint 8
10 Watchpoint 9 = Watchpoint counter 1 match | Watchpoint 8
11 Reserved

CW10

Chain Watchpoint 10

00 Watchpoint 10 = external watchpoint

01 Watchpoint 10 = externa watchpoint & Watchpoint 9
10 Watchpoint 10 = externa watchpoint | Watchpoint 9
11 Reserved

Single-step Trace
0 Single-step trace disabled
1 Every executed instruction causes breakpoint exception

BT

Branch Trace
0 Branch trace disabled
1 Every executed branch instruction causes breakpoint exception

DXFW

Disable eXterna Force Watchpoint
0 External debugger can force watchpoint condition
1 Input from external debugger isignored

Table 13-3. DMR1 Field Descriptions

13.5 Debug Mode Register 2(DM R2)

The debug mode register 2 is special-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user mode is possible,
if itisenabled in PCMRO[UMRA]. It is 32 bits wide register.

The DMR2 is programmed with the watchpoint/breakpoint settings that define how
DVR/DCR pairs operate and is set by the resident debug software or by the development
interface.

BIT 31-24 23-13 12-2 1 0
Identifier Reserved WGB AWCP WCE1 | WCE
0

Reset X 0 0 0 0
R/W R R/W R/W RW | RIW
WCEO Watchpoint Counter Enable 0

0 Counter O disabled

1 Counter O enabled
WCE1 Watchpoint Counter Enable 1

0 Counter 1 disabled

1 Counter 1 enabled
AWPC Assign Watchpoints to Counter

000 0000 0000 All Watchpoints increment counter O
000 0000 0001 Watchpoint O increments counter 1

000 0000 1111 First four watchpoints increment counter 1, rest
increment counter O

111 1111 1111 All watchpoints increment counter 1
WGB Watchpoints Generating Breakpoint

000 0000 0000 Breakpoint disabled

000 0000 0001 Watchpoint O generates breakpoint

001 0000 0000 Watchpoint counter O generates breakpoint

111 1111 1111 All watchpoints generate breakpoint
Table 13-4. DMR2 Field Descriptions

13.6 Debug Watchpoint Counter Register
(DWCRO-DWCR1)

The debug watchpoint counter registers are special-purpose supervisor-level registers
accessible with |.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user
mode is possible, if it is enabled in PCMRO[UMRA]. They are 32 bits wide registers.

The DWCRs contain 16-bit counters that count watchpoints programmed in DMR. Vaue
in DWCR can be accessed by the resident debug software or by the development
interface. DWCRs aso contain match value. When counter reaches match value,
watchpoint is generated.

BIT 31-16 15-0
Identifier MATCH COUNT
Reset 0 0
R/W R/W R/W

COUNT Number of watchpoints programmed in DMR
N 16-bit counter of generated watchpoints assigned to this counter
MATCH N 16-bit value that when matched generates a watchpoint

Table 13-5. DWCR Fidd Descriptions

13.7 Debug Stop Register (DSR)

The debug stop register is specia-purpose supervisor-level register accessible with
|.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user mode is possible,
if itisenabled in PCMRO[UMRA]. It is 32 bits wide register.

The DSR is specifies which exceptions cause the core to stop the execution of the
exception handler and turn over control to development interface. It can be programmed
by the resident debug software or by the development interface.

BIT 31-13 12 11 10 9 8 7
[dentifier Reserved BE SCE RE IME DME | HPINTE
Reset X 0 0 0 0 0 0
R/W R R/W R/W R/W R/W R/W R/W
BIT 6 5 4 3 2 1 0
[dentifier IHE AE LPINTE IPFE DPFE | BUSEE | RSTE
Reset 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
RSTE Reset Exception

0 This exception does not transfer control to the development I/F

1 This exception transfers control to the devel opment interface
BUSEE Bus Error Exception

0 This exception does not transfer control to the development I/F

1 This exception transfers control to the development interface
DPFE Data Page Fault Exception

0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

IPFE

Instruction Page Fault Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

LPINTE

Low Priority Interrupt Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the devel opment interface

AE

Alignment Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

IE

Illegal Instruction Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

HPINTE

High Priority Interrupt Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

DME

DTLB Miss Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

IME

ITLB Miss Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

RE

Range Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the devel opment interface

SCE

Instruction TLB Miss Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

BE

Breakpoint Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

Table 13-6. DSR Field Descriptions

13.8 Debug Reason Register (DRR)

The debug reason register is special-purpose supervisor-level register accessible with
|.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user mode is possible,

if itisenabled in PCMRO[UMRA]. It is 32 bits wide register.

The DRR is specifies which event caused the core to stop the execution of program flow
and turned over control to the development interface. It should be cleared by the resident

debug software or by the development interface.

BIT 31-13 12 11 10 9 8 7
[dentifier Reserved | BE SCE RE IME DME | HPINTE
Reset X 0 0 0 0 0 0
R/W R R/W R/W R/W R/W R/W R/W
BIT 6 5 4 3 2 1 0
[dentifier 1= AE LPINTE | IPFE DPFE | BUSEE | RSTE
Reset 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
RSTE Reset Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
BUSEE Bus Error Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
DPFE Data Page Fault Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
IPFE Instruction Page Fault Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
LPINTE Low Priority Interrupt Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
AE Alignment Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
IE [llegal Instruction Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
HPINTE High Priority Interrupt Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
DME DTLB Miss Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
IME ITLB Miss Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
RE Range Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
SCE Instruction TLB Miss Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

BE Breakpoint Exception

0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface
Table 13-7. DRR Field Descriptions

13.9 Debug Instruction Register (DIR)

The debug instruction register is special-purpose read-only supervisor-level register
accessible with |.mfspr instruction in supervisor mode. Read access in user mode is
possible, if it isenabled in PCMRO[UMRA]. It is 32 bits wide register.

The DIR holds the next instruction to be executed by the core. It can be programmed only
by the development interface. Instruction in the DIR is executed only once and the
register must be set with the new instruction to increment the program flow.

BIT 31-0
Identifier [l
Reset 0
R/W R

LI | Induced Instruction
Table 13-8. DIR Field Descriptions

14 Performance Counters Unit

This chapter describes the OpenRISC 1000 performance counters facility. Performance
counters can be used to count predefined events such as L1 instruction or data cache
misses, branch instructions, pipeline stalls etc.

Performance counters unit can be used for the following:
To improve peformance in many computer systems by developing better
application level agorithms, more optima operating system routines and for
improvements in hardware architecture of these systems (memory subsystems).

To improve future OpenRISC implementations and add future enhancements to
the OpenRISC architecture.

To help system devel opers debug and test their systems.

14.1 Features

OpenRISC 1000 architecture defines eight performance counters. Additional
performance counters can be defined by implementation itself. Performance counters unit
isoptional and its implementation is specified by UPR[PCUP] hit.

Optional implementation.

Eight architecture defined performance counters
Eight custom performance counters
Programmabl e counting conditions.

14.2 Performance Counters Count Registers
(PCCRO-PCCRY7)

The performance counters count registers are a special-purpose supervisor-level registers
accessible with |.mtspr/l.mfspr instruction pair in supervisor mode. Read access in user
mode is possible, if it isenabled in PCMRO[UMRA]. They are 32 bits wide registers.

They count number of events programmed in PCMR registers.

BIT 31-0
|dentifier COUNT
Reset 0

R/W R/W

[COUNT

| Event counter

Table 14-1. PCCRO Field Descriptions

14.3 Performance Counters Mode Registers
(PCMRO-PCMRY7)

The performance counters mode registers are a special-purpose supervisor-level registers
accessible with I.mtspr/l.mfspr instruction pair only in supervisor mode. They are 32 bits
wide registers.

They define which events the performance counters count.

0 Event ignored
1 Count store accesses

BIT 31-26 25-15 14 13 12 11 10
Identifier Reserved WPE | DDS | ITL | DTL BS | LU
BM | BM S
Reset X 0 0 0 0 0 0
R/W Read Only RW | RW | RW | RW | RRW | RIW
BIT 9 8 7 6 5 4 3 2 1 0
Identifier | IFS | ICM | DCM IF SA LA | CIU | CIS | UM | CP
M M RA

Reset 0 0 0 0 0 0 0 0 0 1
R/W RW | RW| RW |[RW| RW | RW | RW | RW| RRW | R
CP Counter Present

0 Counter not present

1 Counter present
UMRA User Mode Read Access

0 Read of PCCR in user mode returns O

1 Read of PCCR in user mode returns PCCR value
CISM Count in Supervisor Mode

0 Counter disabled in supervisor mode

1 Counter counts events in supervisor mode
CluM Count in User Mode

0 Counter disabled in user mode

1 Counter counts eventsin user mode
LA Load Access event

0 Event ignored

1 Count load accesses
SA Store Access event

I nstruction Fetch event
0 Event ignored
1 Count instruction fetches

DCM

Data Cache Miss event
0 Event ignored
1 Count data cache missed

ICM

Instruction Cache Miss event
0 Event ignored
1 Count instruction cache misses

IFS

Instruction Fetch Stall event
0 Event ignored
1 Count instruction fetch stalls

LSUS

LSU Stall event
0 Event ignored
1 Count LSU stalls

BS

Branch Stalls event
0 Event ignored
1 Count branch stalls

DTLBM

DTLB Miss event
0 Event ignored
1 Count DTLB misses

ITLBM

ITLB Miss event
0 Event ignored
1 Count ITLB misses

DDS

Data Dependency Stalls event
0 Event ignored
1 Count data dependency stalls

WPE

Watchpoint Events
000 0000 0000 All watchpoint events ignored
000 0000 0001 Watchpoint O counted

111 1111 1111 All watchpoints counted

Table 14-2. PCMR Field Descriptions

15 Power M anagement

This chapter describes the OpenRISC 1000 power management facility. Power
management facility is optional and implementation may choose, which features to
implement, and which not.

Note that this chapter describes architectural control of power management from the
perspective of the programming model. As such, it does not describes a technology
specific optimizations or implementation techniques.

15.1 Features

OpenRISC 1000 architecture defines four architectural features for minimizing power
consumption:

slow down feature

doze mode

sleep mode

dynamic clock gating feature

Slow down feature takes advantage of the low-power dividers in external clock
generation circuitry to enable full functionality, but at a lower frequency so that a power
consumption is reduced.

Slow down feature is software controlled with the 4-bit value in PMR[SDF]. Lower value
specifies higher expected performance from the processor core. Whether this value
controls a processor clock frequency or some other implementation specific feature is
irrelevant to the controlling software. Usually PMR[SDF] is dynamically set by the
operating system’ sidle routine, that monitors the usage of the processor core.

When software initiates the doze mode, software processing on the core suspends. The
clocks to the processor internal units are disabled except to the internal timer. However
other on-chip blocks continue to function as normal.

The processor should leave doze mode and enter normal mode when a pending interrupt
OCCUrs.

In sleep mode, al processor internal units are disabled and clocks gated. Optionally
implementation may choose to lower the operating voltage of the processor core.

The processor should leave sleep mode and enter normal mode when a pending interrupt
OCCUrs.

If enabled, the clock-gating feature automatically disables clock subtrees to major
processor internal units on a clock cycle basis. These blocks are usualy the CPU,

FPU/VU, IC, DC, IMMU and DMMU. This feature can be used in a combination with
other power management features and low-power modes.

Cache or MMU blocks that are already disabled when software enables this feature, have
completely disabled clock subtrees until clock gating is disabled or until the blocks are
again enabled.

15.2 Power Management Register (PMR)

The power management register is a special-purpose supervisor-level register accessible
with |.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide register.

PMR is used to enable or disable power management features and modes.

BIT 31-7 6 5 4 3-0
[dentifier Reserved DCGE SME DME SDF
Reset X 0 0 0 0
R/W R R/W R/W R/W R/W
SDF Slow Down Factor

0 Full speed

1-15 Logarithmic clock frequency reduction
DME Doze Mode Enable

0 Doze mode not enabled

1 Doze mode enabled
SME Sleep Mode Enable

0 Sleep mode not enabled

1 Sleep mode enabled
DCGE Dynamic Clock Gating Enable

0 Dynamic clock gating not enabled

1 Dynamic clock gating enabled

Table 15-1. PMR Field Descriptions

16 Programmable Interrupt

Controller

This chapter describes the OpenRISC 1000, level one programmable interrupt controller.
Interrupt controller facility is optional and implementation may chose to implement it or
not. If it is not implemented, interrupt inputs O and 1 are directly connected to high and
low priority interrupt exception inputs.

Programmable interrupt controller has three special-purpose registers and 32 interrupt
inputs. Interrupt input 0 and 1 are always enabled and connected to high and low priority
interrupt input, respectively.

30 other interrupt inputs can be masked and assigned low or high priority through
programming special-purpose registers.

16.1 Features

OpenRISC 1000 architecture defines interrupt controller facility with up to 32 interrupt
inputs:

Unmaskable interrupt input O connected to high priority interrupt

Unmaskable interrupt input 1 connected to low priority interrupt

From 0 to 30 maskable interrupt inputs with programmable priority

PICMR PICPR

INT 0 \ §

HIGHPRIO INT
EXCEPTION

! TICK INT

» Mask Function

INT [31:2]

PICSR

YVYY

LOWPRIO INT
EXCEPT

INT 1

Figure 16-1. Programmable Interrupt Controller Block Diagram

16.2 PIC Mask Register (PICMR)

The interrupt controller mask register is a special-purpose supervisor-level register
accessible with I.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide

register.

PICMR is used to mask or unmask 30 programmable interrupt sources.

0x00000000 All interrupts are masked
0x00000001 Interrupt input 2 is enabled, all others are masked

Ox3FFFFFFF All interrupt inputs are enabled

BIT 31-2 1-0
Identifier UM Reserved
Reset X X
R/W R R
IUM Interrupt UnMask

Table 16-1. PICMR Fideld Descriptions

16.3 PIC Priority Register (PICPR)

The interrupt controller priority register is a special-purpose supervisor-level register
accessible with |.mtspr/I.mfspr instruction pair only in supervisor mode. It is 32 bits wide

register.

PICPR is used to assign low or high priority to 30 interrupt sources.

0x00000000 All interrupts are low priority

BIT 31-2 1-0
Identifier IPRIO Reserved
Reset X X
R/W R R
IPRIO Interrupt Priority

0x00000001 Interrupt input 2 is high priority, al others are low priority

Ox3FFFFFFF All interrupt inputs are high priority

Table 16-2. PICPR Field Descriptions

16.4 PIC Status Register (PICSR)

The interrupt controller status register is a specia-purpose supervisor-level register
accessible with |.mtspr/I.mfspr instruction pair only in supervisor mode. It is 32 bits wide

register.

PICSR is used to determine status of each interrupt input. Bits in PICSR represent status
of the interrupt inputs and the actual interrupt must be cleared in the device which is
source of the interrupt.

BIT 31-0
Identifier IS
Reset X
R/W R
IS Interrupt Status

0x00000000 All interrupts are inactive
0x00000001 Interrupt input O is pending

OxFFFFFFFF All interrupts are pending
Table 16-3. PICSR Field Descriptions

17 Tick Timer Facility

This chapter describes the OpenRISC 1000 tick timer facility. It is optional and
implementation may chose to implement it or not.

Tick timer is used to schedule operating system and user tasks on regular time basis or as
a high precision time reference.

Tick timer facility is enabled with TTCR[TTE]. TTIR is incremented with each clock
cycle and a high priority interrupt can be asserted whenever lower 28 bits of TTIR match
TTCR[TP] and TTCR[IE] is set.

TTIR restarts counting from zero when match event happens and TTCR[SR] is cleared. If
TTCR[SR] is s&t, TTIR is halted when match event happens and TTIR must be cleared
(writing 1 to TTCR[SR]) to start counting again from zero.

17.1 Features

OpenRISC 1000 architecture definestick timer facility with the following features:
- Maximum timer count of 2”32 clock cycles
Maximum time period of 228 clock cycles between interrupts
Maskable tick timer interrupt
Single run or restartable timer

TTCR

—
TICK INT

> TTIR q

RISC clk

Figure17-1. Tick Timer Block Diagram

17.2 Tick Timer Control Register (TTCR)

The tick timer control register is a special-purpose supervisor-level register accessible
with |.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide register.

TTCR is programmed with the time period of the tick timer as well as with control bits
that control operation of the tick timer.

BIT 31 30 29 28 27-0
Identifier TTE SR IE IP TP
Reset 0 0 0 0 X
R/W RW | RIW | RIW R R/W
TP Time Period

0x00000000 Shortest comparison time period

OxFFFFFFF Longest comparison time period
IP Interrupt Pending
0 Tick timer interrupt is not pending
1 Tick timer interrupt pending (cleared with every ready of the register)
IE Interrupt Enable
0 Tick timer does not generate an interrupt
1 Tick timer generates an interrupt after timer expires
SR Single Run
O Timer is restarted automatically after expiration
1 Timer is not restarted after expiration (writing 1 into TTCR[SR] will
restart it)
TTE Tick Timer Enable
O Tick timer isdisabled
1 Tick timer is enabled
Table 17-1. TTCR Field Descriptions

17.3 Tick Timer Incrementing Register (TTIR)

The tick timer incrementing register is a specia-purpose register accessible with
|.mtspr/l.mfspr instruction pair in supervisor mode and as read-only register in user mode.
It is 32 bits wide register.

TTIR holds the current value of the timer.

BIT 31-0
Identifier CNT

Reset 0
R/W R/W
CNT Count

32-bit incrementing counter

Table17-2. TTIR Field Descriptions

18 OpenRISC 1000

| mplementations

18.1 Overview

Implementations of the OpenRISC 1000 architecture come in different configurations and
version releases.

Version and unit present registers both identify for which version/release it goes and what
is the configuration of it. Detailed configuration of each unit is available in unit's own
registers.

18.2 Version Register (VR)

The version register is a specia-purpose supervisor-level register accessible with
I.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide register.

It identifies the version (model) and revision level of the OpenRISC 1000 processor. It
also specifies possible standard template on which thisimplementation is based.

BIT 31-16 15-6 5-0
Identifier VER Reserved REV
Reset - X -
R/W R R R
REV Revision

0..63 A 6-bit number that identifies various releases of a particular

version. This number is changed for each revision of the device.

VER Version

0..0xFFFF A 16-bit number that identifies a particular processor version

and version of the OpenRISC architecture. Vaues below 0x1000 and

above Ox1FFF areillegal for OpenRISC 1000 processor implementations.
Table 18-1. VR Field Descriptions

18.3 Unit Present Register (UPR)

The unit present register is a special-purpose supervisor-level register accessible with
[.mtspr/l.mfspr instruction pair only in supervisor mode. It is 32 bits wide register.

It identifies the present units in the processor. It has a bit for each possible unit or
functionality. Lower sixteen bits identify present units defined in the OpenRISC 1000
architecture. Upper sixteen bits define present custom units.

BIT 31-16 14 13 12 11 10 9 8
Identifier CUP SRP | PICP | DUP | PCUP | OV64P | OV32P | OF64P
R/W R R R R R R R R
BIT 7 6 5 4 3 2 1 0
Identifier | OF32P | OB64P | OB32P | IMP DMP ICP DCP uP
R/W R R R R R R R R
UP UPR Present

0 UPR is not present

1 UPRis present
DCP Data Cache Present

0 Unit is not present
1 Unit is present
ICP Instruction Cache Present
0 Unit is not present
1 Unit is present
DMP DataMMU Present
0 Unit is not present
1 Unit is present
IMP Instruction MMU Present
0 Unit is not present
1 Unit is present
OoB32P ORBIS32 Present

0 Not supported

1 Supported
oB64P ORBIS64 Present

0 Not supported

1 Supported
OF32P ORFPX32 Present
0 Not supported

1 Supported
OF64P ORFP64P Present
0 Supported

1 Not supported
ov32P ORVDX32 Present

0 Not supported

1 Supported
ove4P ORVDX64 Present
0 Not supported
1 Supported
PCUP Performance Counters Unit Present

0 Unit is not present
1 Unit is present

DUP Debug Unit Present
0 Unit is not present
1 Unit is present

PICP Programmable Interrupt Controller Present
0 Unit is not present
1 Unit is present

TTP Tick Timer Present

0 Unit is not present
1 Unit is present

SRP Shadowed Registers Present
0 Shadowed registers not present
1 Shadowed registers present
CUP Custom Units Present

Table 18-2. UPR Field Descriptions

19 Application Binary Interface

19.1 Data Representation

19.1.1 Fundamental Types

Scalar types in ISO/ANSI C language are based on memory operands definitions from
chapter “Addressing Modes and Operand Conventions” on page 18. Similar relations
between architecture and language types can be used for any other language.

TYPE CTYPE SIZEOF | ALIGNMENT OPENRISC
(BYTES) EQUIVALENT
Char 1 1 Signed byte
Signed char
Unsigned char 1 1 Unsigned byte
Short 2 2 Signed halfword
Signed short
Unsigned short 2 2 Unsigned halfword
Int 4 4 Signed singleword
Integral | Signed int
Long
Signed long
Enum
Unsigned int 4 4 Unsigned singleword
Long long 8 8 Signed doubleword
Signed long long
Unsigned long long 8 8 Unsigned doubleword
Pointer Any-type* 4 4 Unsigned singleword
Any-type (*) ()
. Float 4 4 Single precision float
i ggflnr;g- Double 8 8 Double precision float
Long double 16 8 Quad precision float

Table19-1. Scalar Types

Null pointer of any type must be zero. All floating-point types are IEEE-754 compliant.

The OpenRISC programming model introduces a set of fundamental vector data types, as
described by Table 19-2. For vector assignments both side of assignment must be of the
same vector type.

VECTOR TYPE SIZEOF | ALIGNMENT OPENRISC EQUIVALENT
(BYTES)

Vector char 8 8 Vector of signed bytes
Vector signed char
Vector unsigned char 8 8 Vector of unsigned bytes
Vector short 8 8 Vector of signed halfwords
Vector signed short
Vector unsigned short 8 8 Vector of unsigned halfwords
Vector int 8 8 Vector of signed singlewords
Vector signed int
Vector long
Vector signed long
Vector unsigned int 8 8 Vector of unsigned singlewords
Vector float 8 8 Vector of single-precisions

Table 19-2. Vector Types

For alignment restrictions of all types see chapter “ Addressing Modes and Operand
Conventions” on page 20.

19.1.2 Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly
aligned element.
An array uses aignment of its elements.
Structures and unions can require padding to meet alignment restrictions. Each
element is assigned to lowest aligned address.

struct {
char C C

b Figure 19-1. Byte aligned, sizeof is1

struct {
char C
char D;
S

N

short N

| ong
1

Figure 19-2. No padding, sizeof is8

C Pad
Pad
struct { S
char C
doubl e D S
short S;
}s S

Figure 19-3. Padding, sizeof is 18

19.1.3 Bit-fields

C structure and union definitions can have eements defined by a specified number of
bits. Table 19-3 describes valid bit-field types and their ranges.

Bit-field Type Width w [bits] Range
Signed char 2% 0 21
Char 1to8 O0to2"-1
Unsigned char 0to2"-1
Signed short 2% o0 2Y-1
Short 1t0 16 O0to2"-1
Unsigned short Oto2"-1
Signed int 2% o 2Y-1
Int Oto2"-1
Enum O0to2"-1
Unsigned int 1t0 32 O0to2"-1
Signed long 2o 2Y 1
Long Oto2"-1
Unsigned long Oto2"-1

Table 19-3. Bit-Field Typesand Ranges

Bit-fields follow the same alignment rules as aggregates and unions, with the following

additions:
- Bit-field are allocated from most to least significant (from left to right)

A bit-field must entirely reside in a storage unit appropriate for its declared type.

Bit-fields may share a storage unit with other struct/union elements, including

elements that are not bit-fields. Struct elements occupy different part of storage

unit.

Unnamed bit-fields' types do not affect alignment of a structure or union

struct {
short S 9;
i nt J:9;
char C

S9) | 39 F(’g; c (8

Pad Pad
@ | YO @

D(8) Pad (24)

T(9)

Figure 19-4. Storage unit sharing
and alignment padding, sizeof is 12

19.2 Function Calling Sequence

This section describes the standard function calling sequence, including stack frame
layout, register usage, parameter passing, and so on. The standard calling sequence
requirements apply only to globa functions, however it is recommended that all
functions use the standard calling sequence.

19.2.1 Register Usage

The OpenRISC 1000 architecture defines 32 general-purpose registers. These registers
are 32 bits wide in 32-bit implementations and 64 bits wide in 64-bit implementations.

Register Preserved across Usage
function calls
R31 Yes Callee-saved register
R30 No Temporary register
R29 Yes Callee-saved register
R28 No Temporary register
R27 Yes Callee-saved register
R26 No Temporary register
R25 Yes Callee-saved register
R24 No Temporary register
R23 Yes Callee-saved register
R22 No Temporary register
R21 Yes Callee-saved register
R20 No Temporary register
R19 Yes Callee-saved register
R18 No Temporary register
R17 Yes Callee-saved register
R16 No Temporary register
R15 Yes Callee-saved register

R14 No Temporary register

R13 Yes Callee-saved register

R12 No Temporary register

R11 No RV - Return value

R10 Yes Callee-saved register

R9 Yes LR—Link address register
R8 No Function parameter number 5
R7 No Function parameter number 4
R6 No Function parameter number 3
R5 No Function parameter number 2
R4 No Function parameter number 1
R3 No Function parameter number O
R2 Yes FP - Frame pointer

R1 Yes SP - Stack pointer

RO - Fixed to zero

Table 19-4. General-Purpose Registers

General-purpose registers are divided into two groups. Registers from RO to R15 are
aways present. Registers from R16 to R31 are present only in high-performance
implementations.

Some registers have assigned roles:

RO [Zero] Always fixed to zero. Even if it is writable in some embedded
implementations, the software shouldn’t modify it.
R1[SP] The stack pointer holds the limit of the current stack frame. Stack

contents below the stack pointer are undefined. Stack pointer must be
double word aligned at al times.

R2 [FP] The frame pointer holds the address of the previous stack frame.
Incoming function parameters reside in the previous stack frame and
can be accessed at positive offsets from FP.

R3 through R8 General-purpose parameters use up to 6 general-purpose registers.
Parameters beyond the sixth parameter appear on the stack.
RO [LR] Link address is the location of the function call instruction and is

used to calculate where program execution should return after
function completion.

R11[RV] Return value of the function. For void functions value is not defined.
For functions returning union or structure, pointer to the result is
placed into return value register.

In addition implementations with hard floating-point support or vector support also have
32 vector/floating-point registers. Each vector/floating-point register is 64 bits wide.

Register | Preserved across | Usage

function calls
VFR7- No Temporary
VFR31
VFR6 No Return value
VFR5 No Function parameter number 5
VFR4 No Function parameter number 4
VFR3 No Function parameter number 3
VFR2 No Function parameter number 2
VFR1 No Function parameter number 1
VFRO No Function parameter number O

Table 19-5. Vector/Floating-Point Registers

Some registers have assigned roles:

VFRO through Vector/Floating-point parameters use up to 6 vector/floating-point
registers. Parameters beyond the sixth parameter appear on the stack.
Return value of the functions that return vector/floating-point type

VFR5
VFR6 [RV]

of data.

Furthermore, OpenRISC 1000 implementation might have severa sets of shadowed
general-purpose and vector/floating-point registers. These shadowed registers are used
for fast context switching and sets can be switched only by the operating system.

19.2.2 The Stack Frame

In addition to registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. Table 19-6 shows the stack frame organization.

Position Contents Frame
FP + 8N Parameter N
. e Previous
FP+0 Parameter O
FP-8 Return address
FP-16 Previous FP value
FP—-24 Current
Function variables
SP+0
SP-8 For use by leaf functionsw/o function
SP—2092 prologue/epilogue Future
SP—2100 For use by exception handlers
SP - 2536

Table 19-6. Stack Frame

Stack pointer aways points to the end of the latest allocated stack frame. All frames must
be double word aigned. In code compiled for 32-bit implementations, upper halves of all
double words are zero.

First 2092 bytes below current stack frame are reserved for leaf functions that do not
need to modify their stack pointer. Exception handlers guarantee that they will not use
this area.

19.2.3 Parameter Passing

Functions receive their first 6 arguments in general-purpose parameter registers or in
vector/floating-point parameter registers. If arguments are combination of integer and
vector/floating-point arguments, they are passed in first lowest general-purpose and
vector/floating-point parameter registers. If there is more than six arguments, remaining
arguments are passed on the stack.

Structure and union arguments are passed as pointers.

19.2.4 Functions Returning Scalarsor No Value

A function that returns an integral or pointer value places its result in general-purpose RV
register. A vector/floating-point return value appears in the vector/floating-point RV
register. Void functions put no particular value in any RV register.

19.2.5 Functions Returning Structuresor Unions

A function that returns structure or union, places address of the structure or union in the
general-purpose RV register.

19.3 Operating System Interface

Exception Interface
Virtual Address Space

Page Size
Virtual Address Assignments

19.4 Position-Independent Code

19.5 ELF

The OpenRISC tools use ELF object file formats and DWARF debugging information
formats, as described in System V Application Binary Interface, from the Santa Cruz
Operation, Inc. ELF and DWARF provide a suitable basis for representing the
information needed for embedded applications. Other object file formats are available,
such as COFF. This section describes particular fields in the ELF and DWARF formats
that differ from the base standards for those formats.

19.5.1 Header Convention

The e_machine member of the ELF header contains the decimal value FOO (hexadecimal
BAR) that is defined as the name EM_OPENRISC.

OpenRISC e _ident Fields

e ident[EI_CLASS] ELFCLASS32 For al 32-bit implementations
e_ident[El_DATA] ELFDATA2MSB For all implementations

Table19-7. e ident Field Values

The ELF header e_flags member contains zero, because the OpenRISC processor family
defines no flags at thistime.

19.5.2 Sections

There are no OpenRISC section requirements beyond the base ELF standards.

19.5.3 Relocation

This section describes values and algorithms used for relocations. In particular, it
describes values the compiler/assembler must leave in place and how the linker modifies
those values.

Name Vdue | Size Cadlculation
R_OPENRISC NONE 0 0 None
R_OPENRISC INSN_REL 26 1 26 (S+A-P)>>2
R_OPENRISC INSN_ABS 26 2 26 (S+A)>>2

R _OPENRISC LO 16 IN INSN |3 16 A & Oxffff
R_OPENRISC HI_16 IN_INSN | 4 16 (A >> 16) & Ox(ffff
R_OPENRISC 8 5 8 A & Oxff
R_OPENRISC 16 6 16 A & Oxffff

[R_OPENRISC_32 [7 [32 (A

Key Sindicates the final value assigned to the symbol refernced in the relocation record.
Key Ais the added value specified in the relocation record. Key P indicates the address
of the relocation (e.g., the address being modified).

Vaues greater than R_OPENRISC_32 are compiler/assembler specific.

19.6 COFF
19.6.1 Sections
19.6.2 Relocation

