802.11a Transmitter: A Case Study in Microarchitectural Exploration

Nirav Dave, Michael Pellauer, Steve Gerding, & Arvind



Figure 1. 802.11a Transmitter Design

IFFT block (Section 2). In Section 3 we present a combi-
national circuit implementation of the IFFT and use it as a
reference implementation in the rest of the paper. We also
show the power of BSV functions and parametrization in
the design of combinational circuits. In Sections 4, 5, and 6
we discuss general microarchitectural explorations and how
they are applied to our transmitter pipeline. In Section 7 we
discuss the performance, area, and some power characteris-
tics of each design. In Section 8 we discuss related work.






temp[3]

mult_by_i(temp[3]);

retv[0] = temp[0] + temp[2];
retv[1] = temp[1] - temp[3];
retv[2] = temp[0] - temp[2];
retv[3] = temp[1] + temp[3];

return retv;
endfunction

Note that the Complex type has been written in such a
way that it represents complex numbers of any bit-precision
n. Type parameters are indicated by the # sign. For ex-
ample, Vector#(4, Complex#(n)) is a vector of 4
n-bit precision complex numbers. The newVector func-
tion creates an uninitialized vector. The Complex type is
a structure consisting of real and imaginary parts (i and g
respectively):

typedef struct {
SaturatingBit#(n) i;
SaturatingBit#(n) q;
} Complex(type n);

All arithmetic on complex numbers is defined in terms
of saturating fixed-point arithmetic. For lack of space we






rule sync-pipeline (True);
let sxO0 = IinQ.Ffirst(Q);
inQ.deqQ);
sRegl <= fO(sx0);
let sx1 = sRegl;
sReg2 <= fl(sx1);
let sx2 = sReg2;
outQ.enq(f2(sx2));
endrule

A rule consists of a set of actions that alter the state and
a predicate (guard) which signifies when it is valid for
these state changes to occur. The state altered by the above
rule consists of two fifos (inQ, outQ) and two registers
(sRegl, sReg?2); the actions are to set the value of reg-
isters (e.g., sSReg2 <= f2(sx1)



tagged Valid .x:
ox = F(fromInteger(i),x);
tagged Invalid:
ox = Invalid;
endcase

//Write Outputs

if(i == n-1)
outQ.enq(ox);
else
sRegs[i] <= ox;
endrule

It is important to keep in mind that because the stage
parameter is known at compile time, the compiler can opti-
mize each call of f



Figure 8. Function f with explicit sharing

common subexpression elimination automatically, but this
form is guaranteed to generate the expected hardware.
It turns out that the stage



required to complete the computation. Consequently, the
rule is also almost the same:

rule super-folded-pipeline(True);
sx = (stage == 0) ? inQ.First(): sReg;
if(stage == 0)
inQ.deq();



Transmitter Design Area EZP; :gl Throughput Min. Freq to
(IFFT Block) (mm?) (cycles))/ (cycle/symbol) | Achieve Req. Rate




