
Thoughts on Event and Thread Mediated
Control Architectures

Center for Distributed Object Computing
Washington University, St. Louis, MO

Chris Gill
cdgill@cs.wustl.edu

www.cs.wustl.edu/~cdgill/OG_Feb01.ppt

Objectives of This Talk
 Describe Capabilities Achieved in Event Mediated Models
• Static/Dynamic/Hybrid Scheduling and Dispatching
• Adaptive Admission Control and Scheduling Optimizations
Highlight a Few Key Features of the RTSJ
• Threading and event handling models and evidence of their

fundamental unity in the RTSJ under a more general perspective
Suggest a Few Milestones for Evaluating/Unifying These Models
• Define Behavioral Descriptors as a Carrier for Unification
• Identify Property Preserving Transformations
• Study Implementation Cost Implications (overhead, jitter, …)
• Study Programming Model Implications

– Complexity, encapsulated (OBP/OOP) & cross-cutting issues (AOP),
design patterns and pattern languages, property weavers

Adaptive Event Scheduling
A little history
• AFRL/Boeing/HTC/WU ASTD program: measurements

showed that strict layering of rate analysis / admission control
mechanisms gave worst case bound no better than O(n2)

Ideas
• Closer integration of mechanisms supports admission control

during O(n log(n)) or better sorting pass
• Policy layering is preserved: RTARM plugs a combined policy

for schedule prioritization and admission control service
requirements into the Scheduler’s generic framework

• But, must enable/disable disjoint operations (and possibly
operation dependencies) efficiently to reduce latency of
adaptive transitions induced by mission state or RTARM

Scheduling/Admission Framework

New Framework
Architecture

• RT ARM plugs
combined rate
admission and
schedule prioritization
policy into scheduler

• Admission and
schedule prioritization
mechanisms in a
combined scheduler
framework enforce
the policy
requirements

Rate
Admission

Scheduling

Combined Policy
Sc

he
du

le
r

C
om

bi
ne

d
Fr

am
ew

or
k

Framework Data Structures & Visitors

Framework Extensions
• Rate tuples and

visiting order index
(sort-able pointer
array) were added to
data structures from
dynamic TAO
scheduler

• New dependency
graph visitor was
added to perform
admission control over
rate tuples

C
om

bi
ne

d
Fr

am
ew

or
k

rate tuples

tuple
visitor

operations

operation
visitors

dependencies

Schedule Computation Algorithm

Re-factored Algorithm

• Reverse-propagation visitor
sums WCET values up each
sub-graph

• Tuple visitor chooses rates
at “root” nodes

• Forward-propagation
visitor does multi-set union
of selected rates down each
sub-graph

• Priority visitor assigns
priorities to operations

Combined Framework

tuple
visitor

operation
visitors

sub-graph

rate
tuples

WCET propagation
selected

rates

rate propagation

propagated
rates

Disjoint Operations & Dependencies

Adaptive Transitions

• Operation sets may
differ between
operating regions:
add enable and
disable behavior

• Internal EC
operations must
persist across regions:
can mark as
nonvolatile

• Automatically disable
absent operations
within the reset calls

Region 0

non-volatile

Region 1

enabled in
region 1

disabled in
region 0

Scheduling/Admission Policies
Prototype Implemented
• MUF_FAIR: Maximum Urgency

First (MUF) scheduling policy + a
new "Fair Admission by Indexed
Rate" (FAIR) admission control
policy

Key Observations
• Release Characteristics

parameterize static and dynamic
execution eligibility and feasibility
decisions (scheduling, dispatching)

• Other decisions (e.g., adaptive
admission control) may modify
release characteristics

• Complex interactions between
decision points along the path

M
U

F
_F

A
IR FAIR

Admits by rate
index, then by

criticality

MUF
Priority by

criticality, MLF
dispatching for all

P
O

L
IC

Y Priority
Scheduling

Strategy

Rate
Admission
Strategy

public class AnalysisTool

{

 public static void main

 (String [] args)

 { AnalysisPipeline ap =

 new AnalysisPipeline ();

 ap.addFilter

 (new PortfolioBalanceFilter ());

 ap.addFilter

 (new SectorPEFilter ());

 ap.run (); // run the pipeline

 }

}

data
event

data feed

Market

market
order

alert
list

send
alerts

RTSJ Example: Stock Market Analysis Tool

RTSJ Example: Java/RTSJ Issues

AnalysisPipeline

SectorPEFilter PortfolioBalanceFilterCompositeFilter

MarketOrderAlert OptionAlert

CallAlert

DataFeed Alert

PutAlert

BuyAlert SellAlert

AnalysisFilter

AnalysisTool

AnnotationDataFeedEvent

NasdaqDataFeed

NasdaqAnnotation

ResearchAnnotation

DataStore

NasdaqStore ResearchStore

Portfolio

low latency

high latency

medium

latency

AlertList

AnnotationList

Synchronization points:

AlertList

AnnotationList

real-time
periodic
no heap

feasibile

scoped
memory

priority inheritance

high priority

over-run handler

duration timer

aynch transfer of control

public class AlertThreadAdapter implements javax.realtime.Schedulable

public AlertThreadAdapter ()

{ /* get/set release/memory/dispatch parameters ... */

 addToFeasibility ();}

 public void run ()

 {javax.realtime.RealtimeThread t =

 javax.realtime.RealtimeThread.currentThread ();

 for (;;)

 { t.waitForNextPeriod (); // respect advertised cost, period

 pipeline.sendAlerts ();
 }

 }

}

RTSJ: Release Characteristics Issues

RTSJ: Time and Timer Issues

• Threads offer a clean
programming model

• However, many real-
time systems benefit
from asynchronous
behavior

• Also, pacing is an
effective/alternative way
to reduce resource
contention and improve
resource utilization

// A needed solution: watchdog timer

public class StoreTimeoutHandler

 extends javax.realtime.AsyncEventHandler

{public void handleAsyncEvent() {/* ... */}}

public class StoreThreadAdapter

 implements javax.realtime.Schedulable

{ public void run ()

 { // ... set up thread priorities ...

 long m = 60000; // one minute

 new javax.realtime.OneShotTimer

 (new javax.realtime.RelativeTime (m,0),

 new StoreTimeoutHandler ());

 store.annotateAlert (alert);

 } // ...

}

Event Handling Model

• Threads allow synchronous
programming styles

• Sometimes, asynchronous styles are
more appropriate
– Real-world timing issues
– Decoupling processing

• Events-and-handlers model provides
mechanisms for:
– Synchronous actions (e.g., w/

threads)
– Asynchronous actions (e.g., w/

timers)
– Mixed (half-sync/half-async)

handler event

handler
method

RTSJ: Async Event Handling Issues

• Previous example of
a one-shot timer used
to determine when a
long-running thread
had been gone too
long

• Could also use a
periodic timer to re-
implement the high
priority alert
transmission code

// Another way to implement periodicity

public class TransmitTimeoutHandler

 extends javax.realtime.AsyncEventHandler

{public void handleAsyncEvent () {/*...*/}}

new javax.realtime.PeriodicTimer

 (null,

 new javax.realtime.RelativeTime

 (1000, 0),

 new TransmitTimeoutHandler ());

RTSJ Issues: Async Transfer of Control

• Want to provide real-
time behavior for long-
running synchronous
activities (e.g., searches)

• For safety/fault-
tolerance, some activities
may need to be halted
immediately

• However, standard
threading and interrupt
semantics can produce
undefined/deadlock
behavior in many
common use-cases

• ATC refines semantics

Pipeline

Research
Store

Timer

“find
anything
relevant”

“stop and give
me what you have
found so far”

searching

RTSJ Issues: Async Transfer of Control

• Even with the one-shot timer, the
long running-thread must be
reigned in somehow

• Deprecated Thread stop, suspend
calls are unsafe

• ATC defers exception as pending
in synchronized methods – avoids
problem w/deprecated Thread
stop method

// Data Store Query Code

public abstract class DataStore

{ /* ... */

public abstract void

annotateAlert (Alert a)

throws javax.realtime.AsynchronouslyInterruptedException;

}

// In timer handling for

// StoreThreadAdapter run ()

t.interrupt ();

RT Issues: Exceptions

• Additional special-purpose
exceptions w/ standard semantics
for
– Memory management
– Synchronization
– System resource management

• Special semantics for ATC
– When to throw (or not)
– Deferred propagation semantics

(“exception tunneling”)
– Nesting of scopes / exception

replacement

safe scope

unsafe scope
“tunnels”

propagates

caught

(re)thrown

raised

RTSJ: Exceptions Issues

• Semantics for AIE are different than others
– deferred in pending state until inside a safe scope, where it will be

thrown

• Other new exceptions deal primarily with incompatibilities of
memory areas
– Trying to assign a reference to scoped memory to a variable in immortal

or heap memory

– Setting up a WaitFreeQueue, exception propagation, etc. in an
incompatible memory area

– Raw memory allocation errors (offset, size)

– Raw memory access errors

• What do we need to do with all this in a distributed context

Concluding Thoughts
 Unifying the Models
• Straightforward to model a periodic remote invocation (or sequence of

invocations) as a distributed thread
• DRTSJ release characteristics descriptor would need to describe locality

(endsystem) as well as existing RTSJ attributes
• Similar generalizations seem useful (ATC for partial failures?)

More Difficult Questions
• One-to-many simultaneous invocation is often useful (scoped concurrency)
• Can describe as a DAG of thread spawns and joins
• But, how do we relate the thread-level descriptors, since same cascade repeats
• Also, where can/should we do synchronization (transactional safety?)

Programming Model Issues
• Middleware seems like an appropriate place to shield the engineer from

complexity, while giving a substrate/receiver for weaving
• Goal: one completely unified model, or > 1 that are semantically unified?

