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Objectives of This Talk
 Describe Capabilities Achieved in Event Mediated Models
• Static/Dynamic/Hybrid Scheduling and Dispatching
• Adaptive Admission Control and Scheduling Optimizations
Highlight a Few Key Features of the RTSJ
• Threading and event handling models and evidence of their

fundamental unity in the RTSJ under a more general perspective
Suggest a Few Milestones for Evaluating/Unifying These Models
• Define Behavioral Descriptors as a Carrier for Unification
• Identify Property Preserving Transformations
• Study Implementation Cost Implications (overhead, jitter, …)
• Study Programming Model Implications

– Complexity, encapsulated (OBP/OOP) & cross-cutting issues (AOP),
design patterns and pattern languages, property weavers



Adaptive Event Scheduling
A little history
• AFRL/Boeing/HTC/WU ASTD program: measurements

showed that strict layering of rate analysis / admission control
mechanisms gave worst case bound no better than O(n2)

Ideas
• Closer integration of mechanisms supports admission control

during O(n log(n)) or better sorting pass
• Policy layering is preserved: RTARM plugs a combined policy

for schedule prioritization and admission control service
requirements into the Scheduler’s generic framework

• But, must enable/disable disjoint operations (and possibly
operation dependencies) efficiently to reduce latency of
adaptive transitions induced by mission state or RTARM



Scheduling/Admission Framework

New Framework
Architecture

• RT ARM plugs
combined rate
admission and
schedule prioritization
policy into scheduler

• Admission and
schedule prioritization
mechanisms in a
combined scheduler
framework enforce
the policy
requirements
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Framework Data Structures & Visitors

Framework Extensions
• Rate tuples and

visiting order index
(sort-able pointer
array) were added to
data structures from
dynamic TAO
scheduler

• New dependency
graph visitor was
added to perform
admission control over
rate tuples
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Schedule Computation Algorithm

Re-factored Algorithm

• Reverse-propagation visitor
sums WCET values up each
sub-graph

• Tuple visitor chooses rates
at “root” nodes

• Forward-propagation
visitor does multi-set union
of selected rates down each
sub-graph

• Priority visitor assigns
priorities to operations

Combined Framework
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Disjoint Operations & Dependencies

Adaptive Transitions

• Operation sets may
differ between
operating regions:
add enable and
disable behavior

• Internal EC
operations must
persist across regions:
can mark as
nonvolatile

• Automatically disable
absent operations
within the reset calls
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non-volatile

Region 1

enabled in
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Scheduling/Admission Policies
Prototype Implemented
• MUF_FAIR: Maximum Urgency

First (MUF) scheduling policy + a
new  "Fair Admission by Indexed
Rate" (FAIR) admission control
policy

Key Observations
• Release Characteristics

parameterize static and dynamic
execution eligibility and feasibility
decisions (scheduling, dispatching)

• Other decisions (e.g., adaptive
admission control) may modify
release characteristics

• Complex interactions between
decision points along the path
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public class AnalysisTool

{

  public static void main

    (String [] args)

  { AnalysisPipeline ap =

      new AnalysisPipeline ();

    ap.addFilter

      (new PortfolioBalanceFilter ());

    ap.addFilter

      (new SectorPEFilter ());

    ap.run ();  // run the pipeline

  }

}
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RTSJ Example: Stock Market Analysis Tool



RTSJ Example: Java/RTSJ Issues

AnalysisPipeline

SectorPEFilter PortfolioBalanceFilterCompositeFilter

MarketOrderAlert OptionAlert

CallAlert

DataFeed Alert

PutAlert
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public class AlertThreadAdapter implements javax.realtime.Schedulable

public AlertThreadAdapter ()

{ /* get/set release/memory/dispatch parameters ... */

  addToFeasibility ();}

 public void run ()

 {javax.realtime.RealtimeThread t =

    javax.realtime.RealtimeThread.currentThread ();

  for (;;)

  { t.waitForNextPeriod ();  // respect advertised cost, period

    pipeline.sendAlerts ();
  }

 }

}

RTSJ: Release Characteristics Issues



RTSJ: Time and Timer Issues

• Threads offer a clean
programming model

• However, many real-
time systems benefit
from asynchronous
behavior

• Also, pacing is an
effective/alternative way
to reduce resource
contention and improve
resource utilization

// A needed solution: watchdog timer

public class StoreTimeoutHandler

  extends javax.realtime.AsyncEventHandler

{public void handleAsyncEvent() {/* ... */}}

public class StoreThreadAdapter

  implements javax.realtime.Schedulable

{ public void run ()

  { // ... set up thread priorities ...

    long m = 60000; // one minute

    new javax.realtime.OneShotTimer

     (new javax.realtime.RelativeTime (m,0),

      new StoreTimeoutHandler ());

    store.annotateAlert (alert);

  } // ...

}



Event Handling Model

• Threads allow synchronous
programming styles

• Sometimes, asynchronous styles are
more appropriate
– Real-world timing issues
– Decoupling processing

• Events-and-handlers model provides
mechanisms for:
– Synchronous actions (e.g., w/

threads)
– Asynchronous actions (e.g., w/

timers)
– Mixed (half-sync/half-async)

handler event

handler
method



RTSJ: Async Event Handling Issues

• Previous example of
a one-shot timer used
to determine when a
long-running thread
had been gone too
long

• Could also use a
periodic timer to re-
implement the high
priority alert
transmission code

// Another way to implement periodicity

public class TransmitTimeoutHandler

  extends javax.realtime.AsyncEventHandler

{public void handleAsyncEvent () {/*...*/}}

new javax.realtime.PeriodicTimer

     (null,

      new javax.realtime.RelativeTime

            (1000, 0),

      new TransmitTimeoutHandler ());



RTSJ Issues: Async Transfer of Control

• Want to provide real-
time behavior for long-
running synchronous
activities (e.g., searches)

• For safety/fault-
tolerance, some activities
may need to be halted
immediately

• However, standard
threading and interrupt
semantics can produce
undefined/deadlock
behavior in many
common use-cases

• ATC refines semantics
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RTSJ Issues: Async Transfer of Control

• Even with the one-shot timer, the
long running-thread must be
reigned in somehow

• Deprecated Thread stop, suspend
calls are unsafe

• ATC defers exception as pending
in synchronized methods – avoids
problem w/deprecated Thread
stop method

// Data Store Query Code

public abstract class DataStore

{ /* ... */

public abstract void

annotateAlert (Alert a)

throws javax.realtime.AsynchronouslyInterruptedException;

}

// In timer handling for

// StoreThreadAdapter run ()

t.interrupt ();



RT Issues: Exceptions

• Additional special-purpose
exceptions w/ standard semantics
for
– Memory management
– Synchronization
– System resource management

• Special semantics for ATC
– When to throw (or not)
– Deferred propagation semantics

(“exception tunneling”)
– Nesting of scopes / exception

replacement

safe scope

unsafe scope
“tunnels”

propagates

caught

(re)thrown

raised



RTSJ: Exceptions Issues

• Semantics for AIE are different than others
– deferred in pending state until inside a safe scope, where it will be

thrown

• Other new exceptions deal primarily with incompatibilities of
memory areas
– Trying to assign a reference to scoped memory to a variable in immortal

or heap memory

– Setting up a WaitFreeQueue, exception propagation, etc. in an
incompatible memory area

– Raw memory allocation errors (offset, size)

– Raw memory access errors

• What do we need to do with all this in a distributed context



Concluding Thoughts
 Unifying the Models
• Straightforward to model a periodic remote invocation (or sequence of

invocations) as a distributed thread
• DRTSJ release characteristics descriptor would need to describe locality

(endsystem) as well as existing RTSJ attributes
• Similar generalizations seem useful (ATC for partial failures?)

More Difficult Questions
• One-to-many simultaneous invocation is often useful (scoped concurrency)
• Can describe as a DAG of thread spawns and joins
• But, how do we relate the thread-level descriptors, since same cascade repeats
• Also, where can/should we do synchronization (transactional safety?)

Programming Model Issues
• Middleware seems like an appropriate place to shield the engineer from

complexity, while giving a substrate/receiver for weaving
• Goal: one completely unified model, or > 1 that are semantically unified?


