Thoughts on Event and Thread Mediated
Control Architectures

Chris Gil|
www.cs.wustl.edu/~cdgill/OG_Feb01.ppt

Center for Distributed Object Computing
Washington University, St. Louis, MO

£E Washington PHGHO



Objectives of This Talk

Describe Capabilities Achieved in Event Mediated Models

o Jatic/Dynamic/Hybrid Scheduling and Dispatching
« Adaptive Admission Control and Scheduling Optimizations
Highlight a Few Key Features of the RTSJ

 Threading and event handling models and evidence of their
fundamental unity in the RTSJ under a more general perspective

Suggest a Few Milestones for Evaluating/Unifying These Models

« Define Behavioral Descriptors as a Carrier for Unification
 Identify Property Preserving Transformations

e Study Implementation Cost Implications (overhead, jitter, ...)

o Study Programming Model Implications

— Complexity, encapsulated (OBP/OOP) & cross-cutting issues (AOP),
design patterns and pattern languages, property weavers

&2 Washington PDHGEO




Adaptive Event Scheduling

Alittle history

 AFRL/Boeing/HTC/WU ASTD program: measurements
showed that strict layering of rate analysis / admission control
mechanisms gave worst case bound no better tQ4rny)

|deas

* Closer integration afnechanisms supports admission control
duringO(n log(n)) or better sorting pass

* Policy layering is preserved: RTARM plugs a combipetcy
for schedule prioritization and admission control service
requirements into the Scheduler’s generic framework

« But, must enable/disable disjoint operations (and possibly
operation dependencies) efficiently to reduce latency of
adaptive transitions induced by mission state or RTARM

&2 Washington PDHGEO



Scheduling/Admission Framework

Combined Policy New Framework
Architecture

« RT ARM plugs
combined rate

Rate Scheduling admission a_nd_ o
Admission schedule prioritization
policy into scheduler
N N e Admission and

schedule prioritization
mechanismsin a
combined scheduler
framework enforce
the policy
reguirements

Combined Schedul er

Framework
-

D-C-&




Framework Data Sructures & Visitors

: Framework Extensions
rate tuples operations * R_a_te_tuples an_d

: visiting order index
(sort-able pointer
array) were added to
data structuresfrom
dynamic TAO
scheduler

:  New dependency

. dependencies graph visitor was
: added to perform
admission control over

tuple ‘ ((6 operation ratetuples

Vvisitor visitors

Combined Framework

D-C-&




Schedule Computation Algorithm

Combined Framework Re-factored Algorithm
rate propagation —» « Reverse-propagation visitor
< WHEET [prepegEien sums WCET values up each
selected propagated
rates rates sub-graph
([ [ 1] o
=i e Tuplevigitor choosesrates
tuples at “root” nodes

* Forward-propagation
visitor does multi-set union
of selected rates down each
sub-graph

e Priority visitor assigns

tuple ' ((60peration prioritiesto operations

visitor visitors

D-C-C




Digoint Operations & Dependencies

Region O Region 1

non-volatile

]

disabled in enabled in
region 0 region 1

.
rl\.

Adaptive Transitions

e Operation sets may
differ between
oper ating regions:
add enable and
disable behavior

 Internal EC
oper ations must
persist acrossregions:
can mark as
nonvolatile

 Automatically disable
absent operations
within thereset calls

D-C-&



Scheduling/Admission Policies

§ Priority Rate

3 Scheduling Admission

o Strategy Strategy

x MUF FAIR

< Priority by Admits by rate
u' criticality, MLF =~ index, then by
= dispatching forall  criticality

Prototype | mplemented

MUF_FAIR: Maximum Urgency

First (MUF) scheduling policy + a
new " Fair Admission by Indexed
Rate" (FAIR) admission control

policy

Key Observations

Release Characteristics
parameterize static and dynamic
execution eligibility and feasibility
decisions (scheduling, dispatching)
Other decisions (e.g., adaptive
admission control) may modify
release characteristics

Complex inter actions between
decision pointsalong the path

lglr‘ | !ulp
g ‘“ "-ﬂ



RTSJ Example: Sock Market Analysis Tool

publ i c class Anal ysi sTool alert

{ list
public static void nain
(String [] args) /
ap. addFi | ter

(new PortfolioBal anceFilter ());
ap. addFi | ter [ ]
(new SectorPEFilter ()); data
event

alerts

{ Anal ysi sPipeline ap =
new Anal ysi sPi peline ();

— mar ket
order

data feed

ap.run (); // run the pipeline

£ Washingron pHGNO

B HE T, N AL ERSITY [ = O TS



RTSJ Example: Java/RTS] Issues

A nnlygi sT ool

duration timer

'

AnalysisFilter

— <

AnalysisPipeline

2

feasibile

over-run handler

low latency =%
high priority

CompositeFilter || Sector PEFilter || PortfolioBalanceFilter || . real-time
Portfolio periodic
no heap
DataFeedEvent Annotation AnnotationList | scoped
DataFeed Alert memory
A A priority inheritance A
NasdagDataFeed | : | '_
Resear chAnnotation MarketOrderAlert OptionAlert
DataStore "3 high latency _ A
A h Ser of | NasdagAnnotation [ |
| aynch tran ler oF contro CallAlert | | PutAlert
NasdaqStore Resear chStore | |
BuyAlert | | SellAlert
Synchronization points: -
£ Washingron DHGRO



RTSJ): Release Characteristics Issues

public class Al ertThreadAdapter inplenments javax.realtine.Schedul abl e

public Al ertThreadAdapter ()

{ I* get/set rel ease/ nenory/di spatch paraneters ... */
addToFeasi bility ();}

public void run ()

{javax.realtine. RealtinmeThread t =
javax.realtime. Real ti meThread. current Thread ();

for ()

{ t.waitForNextPeriod (); [// respect advertised cost, period
pi peline.sendAlerts ();

}
}
}
B ashineon D-C:C



RTSJ: Time and Timer Issues

/1 A needed solution: watchdog tiner
public class StoreTi neout Handl er

extends javax.realtinme. AsyncEvent Handl er
{public void handl eAsyncEvent () {/* ... */}}

public class StoreThreadAdapt er
I npl enments javax.real ti ne. Schedul abl e
{ public void run ()
{ Il ... set up thread priorities ...
| ong m = 60000; // one mnute
new | avax. real tinme. OneShot Ti ner
(new javax.realtinme. RelativeTinme (mO0),
new St or eTi neout Handl er ());
store.annotateAlert (alert);
|

& Washingron

A T

Threads offer a clean
programming model

However, many real-
time systems benefit
from asynchronous
behavior

Also, pacingisan
effective/alter native way
toreduceresource
contention and improve
resour ce utilization



Event Handling Model

 Threadsallow synchronous
programming styles

e Sometimes, asynchronous stylesare
mor e appropriate

U — Real-world timing issues
\—event — Decoupling processing

» Events-and-handlers model provides
\ mechanisms for

handler
method

— Synchronous actions (e.g., w/
threads)

— Asynchronous actions (e.g., w/
timers)

— Mixed (half-sync/half-async)

2 Washineton B0 G
T R o I e LWt - L S

o



RTSJ: Async Event Handling Issues

/1 Another way to inplenent periodicity

public class Transm t Ti meout Handl er
extends javax.realtine. AsyncEvent Handl er

{public void handl eAsyncEvent () {/*...*/}}

new j avax. real tine. Peri odi cTi mer
(nul I,
new j avax.realtine. Rel ativeTi ne
(1000, 0),
new Transm t Ti mneout Handl er ());

& Washingron

[y P

Previous example of
a one-shot timer used
to determinewhen a
long-running thread
had been gonetoo
long

Could alsouse a
periodictimer tore-
Implement the high
priority alert
transmission code



RTSJ Issues. Async Transfer of Control

—~& Pipeline 2
/“find “

anything
relevant” Timer

Research
Store

»$

searching

“stop and give
me what you have
found so far”

Want to providereal-
time behavior for long-
running synchronous
activities (e.g., searches)
For safety/fault-
tolerance, some activities

may need to be halted
immediately

However, standard
threading and interrupt
semantics can produce
undefined/deadlock
behavior in many
Ccommon use-cases

ATC refines semantics
D C:-C



RTSJ Issues. Async Transfer of Control

« Even with the one-shot timer, the

/| Data Store Query Code long running-thread must be
public abstract class DataStore reigned in somehow
{1 L% » Deprecated Thread stop, suspend

publ i c abstract void callsare unsafe

annotateAlert (Alert a)

throws javax.realtine. Asynchronousl yl nterruptedException;

}

 ATC defersexception as pending
In synchronized methods — avoids
/1 StoreThreadAdapter run () problem w/deprecated Thread

t.interrupt (); stop method

[l In timer handling for

& Washington DHGHO

[y P



RT Issues. Exceptions

o Additional special-purpose

safe scope fe(>)<rcept|ons w/ standard semantics
Kcaught — Memory management
— Synchronization
— System resour ce management
bropagatesy o Special semanticsfor ATC
B (re)thrown — When to throw (or not)
aised — Deferrec! propagat_ion semantics
& 0 (“exception tunneling”)
— Nesting of scopes/ exception
“tunnels” replacement
unsafe scope

E2 Washington DHGIO



RTSJ: Exceptions Issues

 Semantics for AIE are different than others
— deferred in pending state until inside a safe scope, where it will be
thrown
« Other new exceptions deal primarily with incompatibilities of
memory areas

— Trying to assign a reference to scoped memory to a variable in immortal
or heap memory

— Setting up a WaitFreeQueue, exception propagation, etc. in an
incompatible memory area

— Raw memory allocation errors (offset, size)
— Raw memory access errors

e What do we need to do with all this in a distributed context

£E Washington PHGHO



Concluding Thoughts

Unifying the Models

« Straightforward to model a periodic remote invocation (or sequence of
Invocations) as a distributed thread

« DRTSJ release characteristics descriptor would need to describe locality
(endsystem) as well as existing RTSJ attributes

« Similar generalizations seem useful (ATC for partial failures?)

More Difficult Questions

* One-to-many simultaneous invocation is often useful (scoped concurrency)

o Can describe as a DAG of thread spawns and joins

* But, how do we relate the thread-level descriptors, since same cascade repeat:
» Also, where can/should we do synchronization (transactional safety?)

Programming Model |ssues

 Middleware seems like an appropriate place to shield the engineer from
complexity, while giving a substrate/receiver for weaving

» Goal: one completely unified model, or > 1 thatsemaantically unified?



