Connecting External Job Management
Systems to the SAP NetWeaver
Scheduler for Java

Interface

SAP
JAVA-JXBP 7.1
Version 1.1

Java External Interface for Background
Processing

Copyright

© Copyright 2009 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AlX, S/390, AS/400,
0S/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/0OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, Informix, i5/0S, POWER, POWERS5, OpenPower and
PowerPC are trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World
Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, XApps, XApp, SAP NetWeaver, and other SAP products
and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their respective companies.
Data contained in this document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP
AG and its affiliated companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

Contents

1. INTRODUCTION i
2. OVERVIEW i
3. THE FUNCTION OF EXTERNAL INTERFACES g
4., A SHORT INTRODUCTION TO AS JAVA BACKGROUND
PROCESSING 6
4.1 Motivation 6
4.2 Architecture and Concepts of the SAP NetWeaver Scheduler for Java 7
4.2.1 Architecture 7
4.2.2 Jobs and Job Definition 8
4.2.3 Job Statuses 8
4.2.4 Parent/Child Functionality 9
4.2.5 Events 9
4.2.6 Logging and Tracing 9
5. REQUIREMENTS FOR USING THE JXBP INTERFACE £
5.1 Configuring the External Scheduler in SAP NWA 10
5.2 Security settings 11
6. CERTIFICATION REQUIREMENTS £
7. JXBP - EXTERNAL JOB SCHEDULING INTERFACE (EXTERNAL
JOB API) 11
7.1 What Is Required 12
7.2 JXBP Interface Description 12

Symbols

Symbol | Meaning

A Warning
] Example

]

é) Tip

Sl

Recommendation

Syntax

1. Introduction

This document describes the connection of an external job management system (often
called an external scheduler) to the SAP NetWeaver Application Server Java (AS
Java). For this purpose, SAP has defined a public interface called JXBP, which stands
for Java eXternal interface for job Background Processing. JXBP is one of a range of
open interfaces, which SAP makes available for system management tasks.

2. Overview

Chapter Contents

3 General description of the external interfaces function.

4 Short introduction to SAP NetWeaver AS Java background
processing. In this chapter you can find details for the Java Scheduler
concept, architecture, and terminology.

5 Description of the requirements for using the JXBP interface.

This chapter contains information of how to configure external
schedulers in the SAP NetWeaver Administrator and the necessary
security settings.

6 Certification requirements.
This chapter describes, what you need, in order to certify your usage of
the JXBP interface.

7 JXBP interface description

3. The Function of External Interfaces

SAP System
External - Open
System Administration Tool Interfaces

Fig. 3.1: Location of external interfaces

The external interfaces provide simple and seamless integration of the SAP system
into both local administrative tools and business-wide system management
infrastructures. The benefit from the integration is to provide the customer with a
homogenous information infrastructure. The role of the interface is to facilitate the flow
of information between the SAP system and the external tools.

4. A Short Introduction to AS Java

Background Processing

The SAP NetWeaver Scheduler for Java is a part of the SAP NetWeaver AS Java
systems version 7.1 Enhancement Package 1 SP4 or higher. It implements an object-
oriented approach for jobs development and scheduling.. It provides low-level job
scheduling capabilities for applications running on the AS Java, such as enabling the
automated execution of tasks that applications can perform in the background.

(

For simplicity, in this documentation we refer to the SAP NetWeaver Scheduler
Java as the Java Scheduler.

The scope and the features of the Java Scheduler are similar to those offered by the
CCMS ABAP Scheduler (transactions SM36 and SM37) in AS ABAP.

The Motivation section below explains why background processing in general has a
place in a dialog-oriented standard application, while the Architecture section explains
the concept and the terminology concerning the Java Scheduler.

4.1 Motivation

SAP NetWeaver is a platform used for interactive applications. In other words, the vast
majority of tasks are carried out in dialog with the user. However, there are also good
reasons for the inclusion of a background processing system in AS Java.

Besides the tasks carried out in a dialog, there are tasks processing large amounts of
data and requiring lots of resources that do not need user interaction. With the help of
the background processing system, such tasks are normally scheduled for times when
the load on the system is low (during the nights, weekends, and so on), in order to
avoid resource conflicts with the dialog users.

At the scheduled point in time, these tasks are started by the background processing
system and executed without user interaction.

This mechanism is especially useful for tasks that have to be carried out periodically,

6

for example each week or each month. In the background processing system, these
tasks — including the period - have to be specified once only. No further action is
required from the user with respect to the regular execution.

4.2 Architecture and Concepts of the SAP
NetWeaver Scheduler for Java

4.2.1 Architecture

The figure below outlines the architecture of the Java Scheduler:

Application Server Java

EJB container

JME meszage
&'4 totrigger a Job

Jobs are implemented on the basis of message-driven beans. A message-driven bean
containing a job is called a JobBean. The execution of JobBeans is handled by the
EJB container. A JobBean is executed when it receives a Java Messaging Service
(JMS) message from the scheduler runtime service. In cluster environment, the JMS is
responsible for load balancing: it decides which JobBean instance on which node gets
the request to run. For a description of the job and job definition concept see section
4.2.2.

The Java Scheduler defines two services:
e Scheduler Runtime Service

Controls all runtime aspects of a job. It handles the execution of jobs on the
server node where it is running, provides error handling, and maintains job
definitions and job runtime information, such as job parameters and log files.

e Scheduler Service

Schedules jobs deployed on the application server and submits them to the
scheduler runtime service. The scheduler service accepts requests for
rescheduling, canceling and deleting jobs.

The two services store the complete state of the Java Scheduler in the database.
In cluster environment, the scheduler runtime service is deployed and runs on every
cluster node. The scheduler service is also deployed on all cluster nodes, but it runs

7

only on a single node at a time. The node where it runs is designated as the singleton
node. If the singleton node goes down, the scheduler service gets activated on another
cluster node. This mechanism ensures the scheduler service failover.

4.2.2 Jobs and Job Definition

The abstract logic of the work to be performed is stored in a job definition. The job
definition is deployed on the server and implements the business logic of a job. When
a job definition is scheduled with specific parameters and start conditions, a concrete
instance of this job definition, called job, is executed. The same job definition can be
scheduled with various parameters and start conditions.

Thus, a job runs once with particular parameter values at a particular point in time or
upon a particular event and performs a certain amount of work. One job runs in one
thread.

The Java Scheduler supports child jobs (see section 4.2.4) and job chains.

As a runtime object, a job has a life cycle characterized by job statuses (see section
4.2.3 below). Jobs also write logs (see section 4.2.5).

4.2.3 Job Statuses

The status of a scheduled job signifies the job condition at a certain point in the job’s
life cycle. A job can be only in one status at a time. A job can be in any of the six job
statuses outlined in the table below.

In its life cycle, a job always has exactly one of the following statuses:

Status Description
Starting The job is currently being started.

The status starting is possible when a IMS
message was sent to trigger the job but the job
has not yet received it. This delay in the JIMS
message receipt is possible if currently there are
not enough threads to run a job.

Running The job is currently performing its unit of work.
Completed The job has finished its unit of work.
Error The job has completed its unit of work but threw

an exception during execution or indicated failure
by invoking an API method.

Unknown The state of the job is not known.

The status unknown is possible when a node,
during its start up, detects that there are jobs
currently running on it.

Canceled The execution of the job was canceled while the job
was in status starting.

1]

If you try to cancel a job in status running, it
gets canceled cooperatively. The job
acknowledges the request for cancellation but
may or may not get canceled.

o If the job gets canceled, it changes
its status from running to either
completed, or error. The job does

8

not change to status canceled.

e If the job does not get canceled,
it remains in status running.

The figure below shows the possible job statuses and their transitions.

Error

Completed

Running

Unknown

4.2.4 Parent/Child Functionality

The business process carried out by a job or by a collection of jobs, does not consist
only of static jobs, which are known in advance and shown right away in the job
overview. It also comprises jobs that are created at runtime, for example, to
dynamically distribute workload. A job that is released by another job is called a child
job, and the releasing job is called a parent job.

By using JXBP methods, the external scheduler can find out whether or not a job has
child jobs. The SAP background processing system stores the parent/child data of jobs
automatically and offers functions to access these data. JXBP offers functions to
access the parent/child data of jobs. See also the method overview in section 6.2.

4.2.5 Events

The Java scheduler has an event concept. When starting a job, the external scheduler
marks a job as running. When, for example, the job has been finished, the external
scheduler needs to be informed for the status change. This information exchange
takes place via events. An event is generated, whenever the job changes its status.
Unhandled events are the new events. Events that have been already read are called
‘handled’ event. See also the method overview in section 6.2.

4.2.6 Logging and Tracing

The NetWeaver Scheduler for Java uses the standard SAP Logging framework to log
messages on two levels:

Job level (job logs)

Logs at job level, or job logs, are logged in the database by every job. The
following rules apply for job logs:

e Ajoblog is always associated with the job instance that logged it. The
lifetime of the job log matches the lifetime of the job.

e The log for a job is deleted when the corresponding job is deleted, for
example when the job’s retention period has expired.

¢ Job logs are not overwritten by a “Rotating log file set” strategy.

e You can retrieve a log written by a particular job no matter on which
server process the job ran, or whether the node where the job ran is
still part of the cluster.

The Java Scheduler allows managing the size of job records in the database. A job
has a retention period denoting the number of days that a job record is persisted in
the database. To prevent database overflow caused by too many job logs, in the
job definition’s deployment descriptors job’s retention period can be configured.

e Scheduler level (Java Scheduler logs)

By default, the Java Scheduler logs are logged under the /System/Server
category, at SYS_SERVER.

5. Requirements for Using the JXBP Interface

The following requirements must be met so that an external scheduler can schedule a
jobin an AS Java system.

5.1 Configuring the External Scheduler in SAP NWA

You have to make the external job scheduler acquainted to the SAP Java system. This
configuration task is executed in the SAP NetWeaver Administrator of the SAP Java
system.

Proceed as follows to configure the external scheduler in the SAP NetWeaver
Administrator:

1. Logon to the SAP NetWeaver Administrator, and choose Operation Management -
> Jobs -> Java Scheduler.

You see now the users interface of the SAP NetWeaver Java Scheduler in the
SAP NetWeaver Administrator.

2. Choose External Schedulers -> Add to enter the configuration data for the external
scheduler you want to make acquainted to the SAP Java system.

The dialog window Add External Scheduler is displayed.
3. Enter the following data:
¢ Name and description of the External Scheduler.

e User

The external scheduler accesses the Java system via a certain user. With this
user the Java scheduler recognizes the external scheduler.

The user entry depends on if there has already been a user defined and if the
AS Java system is a standalone system or a double-stack system.

- If it is a standalone system you can reuse existing user by mark option
Existing User and entering his user ID. The alternative is to create a new user
by enter a user name and enter and confirm a password for the new user.

- In a dual-stack system, it is not possible to create a new user in the Java
stack of the system. Therefore, in this case, you have to mark Existing User
option and entering his user ID.

The user can access the scheduler only via JXBP. And the external scheduler
needs to know this user and password, so that it can connect to the Java

10

Scheduler. With the user name the scheduler authenticates itself, so that SAP
NetWeaver knows which external scheduler connects.

¢ Inactivity Grace period

As soon as an external scheduler is registered, it occupies resources on the
server. And if this external scheduler does not connect to the Java system for
a longer period, it would unnecessarily occupy resources that could be used
otherwise. To prevent this, you can enter here an interval. If the external
scheduler does not connect again within this interval, the resources are
released for other purposes

It is recommended to configure this interval to be non-infinite in order to avoid
keeping redundant resources.

4. Choose Add.

5.2 Security settings

The client should invoke the JXBP Web service with the right credentials. In addition,
the provided credentials must belong to a user, who is associated with the particular
external scheduler.

6. Certification Requirements

If you would like to certify your usage of the JXBP external interface, there are some
requirements to be fulfilled:

e You should have at least one valid SAP NetWeaver Developer User license. You
can obtain a license at
http://www.sap.com/community/survey/index.epx?SurveylD=1089

e You need SAP NetWeaver 7.1 Application Server Java installation. The supported
version is 7.1 Enhancement Package 1 SP 4 or higher.

e The test catalogue, which is part of the same certification package
(JAVAIXBP71TC.pdf), should be executed successfully.

@ The latest state of the requirements can be found in SAP Note 1396620.

7. IXBP - External Job Scheduling Interface
(external job API)

Java eXternal Interface for Background Processing (JXBP) is a public API exposed as
a Web service. It provides third-party scheduler providers with access to the Java
Scheduler.

External schedulers cannot schedule jobs by using the scheduling capabilities of the
Java Scheduler. They can use the scheduler only for job execution. For scheduling
jobs, external schedulers should rely on their own scheduling capabilities.

Why does SAP offer the JXBP interface?

Many customers do not process their data with just one SAP system. They usually
have a landscape consisting of one or more SAP systems as well as non-SAP
systems. The non-SAP systems usually also have some kind of a background
processing system.

There are interdependencies between the systems of such a landscape.

11

http://www.sap.com/community/survey/index.epx?SurveyID=1089
https://service.sap.com/sap/support/notes/1396620

07

The non-SAP system A creates data using a background job. The SAP system
B then processes this data in a job. This means that there is a job Y in SAP
system B, which can only start after job X in non-SAP system A has finished.

Such a scenario demonstrates the need for a central job management system. The
SAP background processing system cannot monitor jobs of non-SAP systems. In
addition, the interdependencies between jobs even in a single system are sometimes
so complex that they cannot be described with the functions of the internal batch API.

A central job management system (often referred to as ‘external scheduler’) connects
to the SAP ABAP system via the XBP interface and to the SAP Java system via the
JXBP interface.

In order to manage jobs centrally in a system landscape containing non-SAP systems,
the non-SAP systems also have to provide an interface to which the external scheduler
can connect.

.1 What Is Required

In order to be able to work in the AS Java system, an external job scheduling system
must be able to carry out the following activities within the AS Java system:

e Start jobs (immediately)

e Cancel running jobs

e Delete jobs

e Access information about jobs (status, log, and so on)

There are JXBP methods for carrying out all these activities.

.2 JXBP Interface Description

The JXBP interface specifies the Java eXternal Batch Processing (JXBP) API. It can
be used by external job scheduler in order to run jobs inside the SAP NetWeaver AS
Java. The external scheduler needs to be registered with the scheduler execution
runtime in order to use this service.

The interface methods are grouped into the following categories:

General Information Methods

String getSystemTimeZone() Returns the time zone where the cluster is located.

throws JXBPException . - .
P It might throw JXBPException when the user is not

authenticated or authorized.

& Note that in cluster environment Java Scheduler
expects the whole cluster to be run in a single time
zone.

getVersion() Gets the version of the JXBP interface.

Job Definition Methods

12

Method ‘ Description

JobDefinitionW S[] getJobDefinitions() Returns all job definitions known to the AS Java.

throws JXBPException . - .
P It might throw JXBPException when the user is not

authenticated or authorized or when there is resource
(like database) problem.

JobDefinitionWS getJobDefinitionByName Return the JobDefintion object for a given job definition
(String jobName) name, where:
throws JXBPException e jobName - the name of searched job

If there is no such job definition, return null.

It might throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

JobDefinitionWS getJobDefinitionByld Gets a JobDefinition object by its job definition ID,
(JobDefinitionID id) where:
throws JXBPException e id - an identifier of searched job definition

If there is no such job definition, return nul I.

It can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

Job Methods

Method ‘ Description

JobID executeJob(JobDefinitionID jobDefld, Submits the job for immediate execution, where:
JobParameterW SJ[] jobParametersWs,
Integer retentionPeriod)

throws ParameterValidationException,
NoSuchJobDefinitionException, e jobParametersWS - an array of
JXBPEXxception JobParameterWS consisting of all parameters
required for execution.

e jobDefld - an identifier of the job definition,
which instance will be triggered for execution

e retentionPeriod - overriding the default
period, after which the job artifacts (job itself, job logs,
job parameters, etc) can be automatically removed(by
CleanJob) from scheduler database.

Returns JobID of the submitted job.

Can throw an exception when the provided parameters
are not valid, or there is no job definition with provided
JobDeTfld or when the user is not authenticated or
authorized or when there is resource (like database)

problem.
JoblD executeJob(JobDefinitionID jobDefld, Submits the job for immediate execution, where:
JobParameterW SJ[] jobParametersWs,
Integer retentionPeriod, e jobDefld - an identifier of the job definition,
String vendorData) which instance will be triggered for execution

throws ParameterValidationException,
NoSuchJobDefinitionException,
JXBPEXxception

e jobParametersWS - an array of
JobParameterWS consisting of all parameters
required for execution. The parameters can be
obtained from the corresponding job definition.

e retentionPeriod - overriding the default
period, after which the job artifacts (job itself, job logs,
job parameters, etc) can be automatically removed(by
CleanJob) from scheduler database.

e vendorData - data string to associate with the
executing job. The maximum length allowed for

13

Method ‘ Description

vendor data is 200 characters.
Returns JobID of the submitted job.

Can throw an exception when the provided parameters
are not valid, or there is no job definition with provided
JobDeTfld or when the user is not authenticated or
authorized or when there is resource (like database)
problem or when vendor data sting is too long.

void cancelJob(JoblID jobid)

throws JXBPException,
JoblllegalStateException,
NoSuchJobException

Cancels a job, where:

e jobid - anidentifier of the job, which will be
canceled.

If the job has not been started it will immediately go
into CANCELLED state. If it has been started, it will
cooperatively try to abort the job. This method will just
return with no indication whether the job was
successfully cancelled or not.

Can throw Jobl 1 legal StateException if the job
is not in status RUNNING, NoSuchJobException —
if there is no such job or IXBPException when the
user is not authenticated or authorized or when there is
resource (like database) problem.

void removeJob(JoblD jobid)

throws NoSuchJobException,
JoblllegalStateException,
JXBPEXxception

Removes all information about this job instance from
the SAP NetWeaver AS Java (including logs), where:

e jobid - anidentifier of the job to remove

Can throw Jobl 1 legal StateException if the job
is not in status COMPLETED or ERROR or
UNKNOWN or CANCELLED.

Can throw also NoSuchJobException if a job with
the given job id does not exist.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

void removeJobs (JobID[] jobids)
throws JXBPException

Removes all records of the given job instances from
the SAP NetWeaver AS Java (including logs), where:

e jobids - identifiers of the jobs to use

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

This is a convenient method. Logical errors (e.g. one
or more jobs in an illegal state) will be ignored.

JobWS getJob(JoblID jobid)
throws JXBPException

Returns the job for the given job ID, where:
e jobid - thejob identifier to use
If there is no job with that jobid, return null.

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

JobParameterW S[] getJobParameters
(JoblID jobid)

throws JXBPException

Returns all parameters for the given job, where:
e jobid - thejob identifier to use

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem or when there is no job with

14

Method ‘ Description

given jobid.

JobWSJ] getJobs (JobID[] jobids) Return all jobs for the given job IDs, where:
throws JXBPException

e jobids - thejobs identifiers to use

Returns array with size equal to the count of found
jobs, or null if no any jobs has found.

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

JoblteratorW's getJobs(JobFilterWs filterws This method will return all the jobs which match the
JoblteratorW's iterWs, int fetchSize) provided filter criteria. If the result set is bigger than
throws JXBPException the provided fetchSize parameter, the remaining
entries can be retrieved using the returned iterator. The
following code snipped shows how to retrieve the result
from the call:

JoblteratorWsS iter =
Jxbp.getJobs(myFilter, null, 1000);
List<JobWS> jobs = iter.getJobs();

iter = iter.getJobs(myFilter, iter,
1000);
List<JobWS> jobs = iter.getJobs();

Parameters:

e jobFilterWS — the pre-initialize filter object
(may be used to filter by status, start/end time, job id
etc..)

. iterWS — custom job iterator, which can be
returned from the previous call. For first call it can be
null.

e TfetchSize - indicate the maximum count of
the records to be fetched.

Return JoblteratorW S, which contains the result.

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

String getJobStatus(JoblD jobid) Returns the status of a job, where:
throws NoSuchJobException, L L .
JXBPException e jobid - thejob identifier to use

The method can throw NoSuchJobException if
there is no job for given id.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

JoblteratorW'S getJobsByStatus(String s, Returns all jobs with particular status, where:
JoblteratorWs iterWs,
int fetchSize) e s — the status of searched job (e.g. STARTING,

throws JXBPException COMPLETED, ERROR etc.)

e jterWS — custom iterator, which can be returned
from the previous call. For first call it can be null.

e fetchSize - indicate the maximum count of
the records to be fetched.

15

Method ‘ Description

Return JoblteratorW S, which contains the result.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

Child Job Methods

Method ‘ Description
JobW S]] getChildJobs(JoblID jobid)

throws NoSuchJobException, L . » . L
JXBPException e jobid —identifier of job, which is checked for

child jobs
Returns an array of JobWS with all the child jobs.

Gets all child jobs of given job, where:

Can throw NoSuchJobException if a job with the
given job id does not exist.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

boolean hasChildJobs(JoblD jobid) Returns true if this job has at least one child job,
throws NoSuchJobException, where:

JXBPEXxception _ . o . L
e jobid - anidentifier of the job, which is

checked for child jobs

Can throw NoSuchJobException if a job with the
given job id does not exist.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem

boolean(] haveChildJobs(JobID[] jobids) Checks whether several jobs represented by their job
throws JXBPException IDs have child jobs, where

e jobids - anidentifiers of the jobs, which is
checked for child jobs

Return array of booleans. Each element indicates the
result of check whether the corresponding jobid
(from jobids array) has a child job.

Job Log Methods

Method ‘ Description

LoglteratorW'Ss getJobLog (JoblID jobid, This method will return the log for the given job in

LoglteratorWs it, chunks. If the result set is bigger than the provided
int fetchSize) fetchSize parameter the remaining entries can be
throws NoSuchJobException, ~ retrieved using the returned iterator. The following
JXBPException code snipped shows how to retrieve the result from the
call.

LoglteratorWS iter =
Jxbp.getJdobLog(jobld, null, 1000);
String log = iter._nextChunk();

iter = jxbp.getJoblLog(jobld, iter,
1000);
log = iter.nextChunk();

Parameters:

Method ‘ Description

e jobid - an identifier of job for which the log is
retrieved.

. it — custom job log iterator, which can be
returned from the previous call. For first call it can be
null.

e TfetchSize - indicate the maximum count of
the records to be fetched.

Return LoglteratorW's, which contains the result.

Can throw NoSuchJobException if a job with the
given job id does not exist.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem .

void removeJobLog(JoblID jobid)

throws NoSuchJobException, s . e . . .
JoblllegalStateException, e jobid — an identifier of job for which the log will be

JXBPException removed

Can throw NoSuchJobException if a job with the
given job id does not exist.

Removes the job log for the given job, where:

Can throw also Jobl 1legal StateException if the
job is not in status COMPLETED or ERROR or
UNKNOWN or CANCELLED.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem .

17

Vendor Data Methods

void setVendorData (JoblID jobid, String data)

throws NoSuchJobException,
JXBPEXxception

Associate vendor data with the given job, where:

e Jobid — an identifier of job for which the vendor
data will be associated

e data — the vendor data

The maximum length allowed for vendor data is 200
characters.

Can throw NoSuchJobException if a job with the
given job id does not exist.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem or when data string is too
long.

void setVendorData (JoblD[] jobids, String data)

throws NoSuchJobException,
JXBPEXxception

Associate vendor data with the given jobs, where:

e Jobids — an identifiers of jobs for which the
vendor data will be associated

e data — the vendor data

The maximum length allowed for vendor data is 200
characters.

The method ignores if there is no job for one or more
of provided job ids.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem or when data string is too
long.

String[] getVendorData (JobID[] joblds)
throws JXBPEXxception

Returns vendor data associated with provided jobs ID,
where:

e jobids - an identifiers of job, which vendor
data we are interested in.

Can throw and JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem .

Event Methods

EventW S[] getUnhandledEvents(int fetchSize)
throws JXBPEXxception

Returns all unhandled events, where:

e fetchSize - indicate the maximum count of
the records to be fetched.

Returns all events for the current logged-in subscriber
(external scheduler). The events which have been
queued for this subscriber are marked as consumed
and will not be returned anymore.

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem or when fetchSize is not
a positive number.

void clearEvents() throws JXBPException

Clears all events which have been returned by thw
method getUnhandledEvents.

18

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

String[] getJXBPRuntimeEventTypes()

Returns string array of runtime event type names,
which are used by the scheduler runtime.

void setFilter (String[] eventType)
throws JXBPException

Allows a scheduler to specify which events it is
interested in. If setFilter has not been called for a
particular external scheduler, that scheduler will not be
subscribed for any events.

Parameters:

e eventType — an array of event type names
(e.g.
com.sap.-scheduler._runtime.JobStarting,
com.sap-scheduler._runtime. JobFinished)

Can throw JXBPException when the user is not
authenticated or authorized or when there is resource
(like database) problem.

19

	1. Introduction
	2. Overview
	3. The Function of External Interfaces
	4. A Short Introduction to AS Java Background Processing
	4.1 Motivation
	4.2 Architecture and Concepts of the SAP NetWeaver Scheduler for Java
	4.2.1 Architecture
	4.2.2 Jobs and Job Definition
	4.2.3 Job Statuses
	4.2.4 Parent/Child Functionality
	4.2.5 Events
	4.2.6 Logging and Tracing

	5. Requirements for Using the JXBP Interface
	5.1 Configuring the External Scheduler in SAP NWA
	5.2 Security settings

	6. Certification Requirements
	7. JXBP - External Job Scheduling Interface (external job API)
	7.1 What Is Required
	7.2 JXBP Interface Description

