Network Working Group G. Bernstein Internet Draft Grotto Networking Intended status: Standards Track Y. Lee Expires: April 2010 D. Li Huawei W. Imajuku NTT October 8, 2009 Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks draft-ietf-ccamp-rwa-wson-encode-03.txt Status of this Memo This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html This Internet-Draft will expire on April 8, 2007. Copyright Notice Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of Bernstein and Lee Expires April 8, 2010 [Page 1] Internet-Draft Wavelength Switched Optical Networks October 2009 publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Abstract A wavelength switched optical network (WSON) requires that certain key information elements are made available to facilitate path computation and the establishment of label switching paths (LSPs). The information model described in "Routing and Wavelength Assignment Information for Wavelength Switched Optical Networks" shows what information is required at specific points in the WSON. The information may be used in Generalized Multiprotocol Label Switching (GMPLS) signaling protocols, and may be distributed by GMPLS routing protocols. Other distribution mechanisms (for example, XML-based protocols) may also be used. This document provides efficient, protocol-agnostic encodings for the information elements necessary to operate a WSON. It is intended that protocol-specific documents will reference this memo to describe how information is carried for specific uses. Conventions used in this document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119]. Table of Contents 1. Introduction...................................................3 1.1. Revision History..........................................4 1.1.1. Changes from 00 draft................................4 1.1.2. Changes from 01 draft................................4 1.1.3. Changes from 02 draft................................4 2. Terminology....................................................5 3. Common Field Encoding..........................................5 3.1. Link Set Field............................................5 3.2. Wavelength Information Encoding...........................7 3.3. Wavelength Set Field......................................8 3.3.1. Inclusive/Exclusive Wavelength Lists.................9 3.3.2. Inclusive/Exclusive Wavelength Ranges................9 Bernstein and Lee Expires April 8, 2010 [Page 2] Internet-Draft Wavelength Switched Optical Networks October 2009 3.3.3. Bitmap Wavelength Set...............................10 4. Wavelength and Connectivity sub-TLV Encodings.................11 4.1. Available Wavelengths Sub-TLV............................11 4.2. Shared Backup Wavelengths Sub-TLV........................11 4.3. Connectivity Matrix Sub-TLV..............................11 4.4. Port Wavelength Restriction sub-TLV......................13 4.4.1. SIMPLE_WAVELENGTH...................................14 4.4.2. CHANNEL_COUNT.......................................14 4.4.3. WAVEBAND1...........................................14 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT...................15 5. Wavelength Converter Pool Encoding............................15 5.1. Wavelength Converter Set Field...........................16 5.2. Wavelength Converter Accessibility Sub-TLV...............17 5.3. Wavelength Conversion Range Sub-TLV......................18 5.4. Wavelength Converter Usage State Sub-TLV.................19 6. WSON Encoding Usage Recommendations...........................20 6.1. WSON Node TLV............................................20 6.2. WSON Dynamic Node TLV....................................20 6.3. WSON Link TLV............................................21 6.4. WSON Dynamic Link TLV....................................21 7. Security Considerations.......................................21 8. IANA Considerations...........................................21 9. Acknowledgments...............................................21 APPENDIX A: Encoding Examples....................................22 A.1. Link Set Field...........................................22 A.2. Wavelength Set Field.....................................22 A.3. Connectivity Matrix Sub-TLV..............................23 A.4. Connectivity Matrix with Bi-directional Symmetry.........26 A.5. Wavelength Converter Accessibility Sub-TLV...............28 A.6. Wavelength Conversion Range Sub-TLV......................30 10. References...................................................32 10.1. Normative References....................................32 10.2. Informative References..................................32 11. Contributors.................................................34 Authors' Addresses...............................................34 Intellectual Property Statement..................................35 Disclaimer of Validity...........................................36 1. Introduction A Wavelength Switched Optical Network (WSON) is a Wavelength Division Multiplexing (WDM) optical network in which switching is performed selectively based on the center wavelength of an optical signal. [WSON-Frame] describes a framework for Generalized Multiprotocol Label Switching (GMPLS) and Path Computation Element (PCE) control of Bernstein and Lee Expires April 8, 2010 [Page 3] Internet-Draft Wavelength Switched Optical Networks October 2009 a WSON. Based on this framework, [WSON-Info] describes an information model that specifies what information is needed at various points in a WSON in order to compute paths and establish Label Switched Paths (LSPs). This document provides efficient encodings of information needed by the routing and wavelength assignment (RWA) process in a WSON. Such encodings can be used to extend GMPLS signaling and routing protocols. In addition these encodings could be used by other mechanisms to convey this same information to a path computation element (PCE). Note that since these encodings are relatively efficient they can provide more accurate analysis of the control plane communications/processing load for WSONs looking to utilize a GMPLS control plane. 1.1. Revision History 1.1.1. Changes from 00 draft Edits to make consistent with update to [Otani], i.e., removal of sign bit. Clarification of TBD on connection matrix type and possibly numbering. New sections for wavelength converter pool encoding: Wavelength Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. Added optional wavelength converter pool TLVs to the composite node TLV. 1.1.2. Changes from 01 draft The encoding examples have been moved to an appendix. Classified and corrected information elements as either reusable fields or sub-TLVs. Updated Port Wavelength Restriction sub-TLV. Added available wavelength and shared backup wavelength sub-TLVs. Changed the title and scope of section 6 to recommendations since the higher level TLVs that this encoding will be used in is somewhat protocol specific. 1.1.3. Changes from 02 draft Removed inconsistent text concerning link local identifiers and the link set field in section 3.1. Bernstein and Lee Expires April 8, 2010 [Page 4] Internet-Draft Wavelength Switched Optical Networks October 2009 Added E bit to the Wavelength Converter Set Field. Added bidirectional connectivity matrix example. Added simple link set example. Edited examples for consistency. 2. Terminology CWDM: Coarse Wavelength Division Multiplexing. DWDM: Dense Wavelength Division Multiplexing. FOADM: Fixed Optical Add/Drop Multiplexer. ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port count wavelength selective switching element featuring ingress and egress line side ports as well as add/drop side ports. RWA: Routing and Wavelength Assignment. Wavelength Conversion. The process of converting an information bearing optical signal centered at a given wavelength to one with "equivalent" content centered at a different wavelength. Wavelength conversion can be implemented via an optical-electronic-optical (OEO) process or via a strictly optical process. WDM: Wavelength Division Multiplexing. Wavelength Switched Optical Network (WSON): A WDM based optical network in which switching is performed selectively based on the center wavelength of an optical signal. 3. Common Field Encoding In encoding WSON information both sets of links and sets of wavelengths frequently arise. In the following we specify the encoding of these repeatedly used fields. 3.1. Link Set Field We will frequently need to describe properties of groups of links. To do so efficiently we can make use of a link set concept similar to the label set concept of [RFC3471]. The information carried in a Link Set is defined by: Bernstein and Lee Expires April 8, 2010 [Page 5] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action |Dir| Format | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Identifier 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : : : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Identifier N | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Action: 8 bits 0 - Inclusive List Indicates that one or more link identifiers are included in the Link Set. Each identifies a separate link that is part of the set. 1 - Inclusive Range Indicates that the Link Set defines a range of links. It contains two link identifiers. The first identifiers indicates the start of the range (inclusive). The second identifiers indicates the end of the range (inclusive). All links with numeric values between the bounds are considered to be part of the set. A value of zero in either position indicates that there is no bound on the corresponding portion of the range. Note that the Action field can be set to 0x02(Inclusive Range) only when unnumbered link identifier is used. Dir: Directionality of the Link Set (2 bits) 0 -- bidirectional 1 -- ingress 2 -- egress In optical networks we think in terms of unidirectional as well as bidirectional links. For example, wavelength restrictions or connectivity may be different for an ingress port, than for its "companion" egress port if one exists. Note that "interfaces" such as those discussed in the Interfaces MIB [RFC2863] are assumed to be Bernstein and Lee Expires April 8, 2010 [Page 6] Internet-Draft Wavelength Switched Optical Networks October 2009 bidirectional. This also applies to the links advertised in various link state routing protocols. Format: The format of the link identifier (6 bits) 0 -- Link Local Identifier Indicates that the links in the Link Set are identified by link local identifiers. All link local identifiers are supplied in the context of the advertising node. 1 -- Local Interface IPv4 Address 2 -- Local Interface IPv6 Address Indicates that the links in the Link Set are identified by Local Interface IP Address. All Local Interface IP Address are supplied in the context of the advertising node. Others TBD. Note that all link identifiers in the same list must be of the same type. Length: 16 bits This field indicates the total length in bytes of the Link Set field. Link Identifier: length is dependent on the link format The link identifier represents the port which is being described either for connectivity or wavelength restrictions. This can be the link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link local identifier format can result in more compact WSON encodings when the assignments are done in a reasonable fashion. 3.2. Wavelength Information Encoding This document makes frequent use of the lambda label format defined in [Otani] shown below strictly for reference purposes: Bernstein and Lee Expires April 8, 2010 [Page 7] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where Grid is used to indicate which ITU-T grid specification is being used. C.S. = Channel spacing used in a DWDM system, i.e., with an ITU-T G.694.1 grid. n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) and n is a two's complement integer that takes either a negative, zero or a positive value. 3.3. Wavelength Set Field Wavelength sets come up frequently in WSONs to describe the range of a laser transmitter, the wavelength restrictions on ROADM ports, or the availability of wavelengths on a DWDM link. The general format for a wavelength set is given below. This format uses the Action concept from [RFC3471] with an additional Action to define a "bit map" type of label set. Note that the second 32 bit field is a lambda label in the previously defined format. This provides important information on the WDM grid type and channel spacing that will be used in the compact encodings listed. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action| Num Wavelengths | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional fields as necessary per action | | Action: 0 - Inclusive List 1 - Exclusive List Bernstein and Lee Expires April 8, 2010 [Page 8] Internet-Draft Wavelength Switched Optical Networks October 2009 2 - Inclusive Range 3 - Exclusive Range 4 - Bitmap Set Length is the length in bytes of the entire field. 3.3.1. Inclusive/Exclusive Wavelength Lists In the case of the inclusive/exclusive lists the wavelength set format is given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0 or 1 | Num Wavelengths | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n2 | n3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | nm | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where: Num Wavelengths tells us the number of wavelength in this inclusive or exclusive list including the initial wavelength in the list. Hence if the number of wavelengths is even then zero padding of the last half word is required. n2 - nm, are used to specify the frequency as 193.1THz +/- n*(channel spacing) and is a two's complement integer. Note that the channel spacing is given by C.S. and is the same for all frequencies on the list. 3.3.2. Inclusive/Exclusive Wavelength Ranges In the case of inclusive/exclusive ranges the wavelength set format is given by: Bernstein and Lee Expires April 8, 2010 [Page 9] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |2 or 3 | Num Wavelengths | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ In this case Num Wavelengths specifies the number of wavelengths in the range starting at the given wavelength and incrementing the Num Wavelengths number of channel spacing up in frequency. 3.3.3. Bitmap Wavelength Set In the case of Action = 4, the bitmap the wavelength set format is given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 4 | Num Wavelengths | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Bit Map Word #1 (Lowest frequency channels) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Bit Map Word #N (Highest frequency channels) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where Num Wavelengths in this case tells us the number of wavelengths represented by the bit map. Each bit in the bit map represents a particular frequency with a value of 1/0 indicating whether the frequency is in the set or not. Bit position zero represents the lowest frequency, while each succeeding bit position represents the next frequency a channel spacing (C.S.) above the previous. The size of the bit map is Num Wavelengths bits, but the bit map is padded out to a full multiple of 32 bits so that the TLV is a multiple of four bytes. Bits that do not represent wavelengths (i.e., those in positions (Num Wavelengths) and beyond SHOULD be set to zero and MUST be ignored. Bernstein and Lee Expires April 8, 2010 [Page 10] Internet-Draft Wavelength Switched Optical Networks October 2009 4. Wavelength and Connectivity sub-TLV Encodings A type-length-value (TLV) encoding of the high level WSON information model [WSON-Info] is given in the following sections. This encoding is designed to be suitable for use in the GMPLS routing protocols OSPF [RFC4203] and IS-IS [RFC5307] and in the PCE protocol PCEP [PCEP]. Note that the information distributed in [RFC4203] and [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and this document makes use of such constructs. 4.1. Available Wavelengths Sub-TLV To indicate the wavelengths available for use on a link the Available Wavelengths sub-TLV consists of a single variable length wavelength set field as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Wavelength Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 4.2. Shared Backup Wavelengths Sub-TLV To indicate the wavelengths available for shared backup use on a link the Shared Backup Wavelengths sub-TLV consists of a single variable length wavelength set field as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Wavelength Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 4.3. Connectivity Matrix Sub-TLV The switch and fixed connectivity matrices of [WSON-Info] can be compactly represented in terms of a minimal list of ingress and egress port set pairs that have mutual connectivity. As described in [Switch] such a minimal list representation leads naturally to a Bernstein and Lee Expires April 8, 2010 [Page 11] Internet-Draft Wavelength Switched Optical Networks October 2009 graph representation for path computation purposes that involves the fewest additional nodes and links. A TLV encoding of this list of link set pairs is: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Connectivity | MatrixID | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Set A #1 | : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Set B #1 : : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional Link set pairs as needed | : to specify connectivity : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where Connectivity is the device type. 0 -- the device is fixed 1 -- the device is switched(e.g., ROADM/OXC) MatrixID represents the ID of the connectivity matrix and is an 8 bit integer. The value of 0xFF is reserved for use with port wavelength constraints and should not be used to identify a connectivity matrix. There are two permitted combinations for the link set field parameter "dir" for Link Set A and B pairs: o Link Set A dir=ingress, Link Set B dir=egress In this case any signal on the ingress links in set A can be potentially switched out of an egress link in set B. o Link Set A dir=bidirectional, Link Set B dir=bidirectional In this case any ingress signal on the links in set A can potentially egress on a link in set B, and any ingress signal on the links in set B can potentially egress on a link in set A. Bernstein and Lee Expires April 8, 2010 [Page 12] Internet-Draft Wavelength Switched Optical Networks October 2009 See Appendix A for examples of both types of encodings. 4.4. Port Wavelength Restriction sub-TLV The port wavelength restriction of [WSON-Info] can be encoded as a sub-TLV as follows. More than one of these sub-TLVs may be needed to fully specify a complex port constraint. When more than one of these sub-TLVs are present the resulting restriction is the intersection of the restrictions expressed in each sub-TLV. To indicate that a restriction applies to the port in general and not to a specific connectivity matrix use the reserved value of 0xFF for the MatrixID. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixID | RestrictionType | Reserved/Parameter | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional Restriction Parameters per RestrictionType | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where: MatrixID: either is the value in the corresponding Connectivity Matrix sub-TLV or takes the value OxFF to indicate the restriction applies to the port regardless of any Connectivity Matrix. RestrictionType can take the following values and meanings: 0: SIMPLE_WAVELENGTH (Simple wavelength selective restriction) 1: CHANNEL_COUNT (Channel count restriction) 2: WAVEBAND1 (Waveband device with a tunable center frequency and passband) 3: SIMPLE_WAVELENGTH & CHANNEL_COUNT (Combination of SIMPLE_WAVELENGTH and CHANNEL_COUNT restriction. The accompanying wavelength set and channel count indicate wavelength permitted on the port and the maximum number of channels that can be simultaneously used on the port) Bernstein and Lee Expires April 8, 2010 [Page 13] Internet-Draft Wavelength Switched Optical Networks October 2009 4.4.1. SIMPLE_WAVELENGTH In the case of the SIMPLE_WAVELENGTH the GeneralPortRestrictions (or MatrixSpecificRestrictions) format is given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixID | RstType = 0 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Wavelength Set Field | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ In this case the accompanying wavelength set indicates the wavelengths permitted on the port. 4.4.2. CHANNEL_COUNT In the case of the CHANNEL_COUNT the format is given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixID | RstType = 1 | MaxNumChannels | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ In this case the accompanying MaxNumChannels indicates the maximum number of channels that can be simultaneously used on the port/matrix. 4.4.3. WAVEBAND1 In the case of the WAVEBAND1 the GeneralPortRestrictions (or MatrixSpecificRestrictions) format is given by: Bernstein and Lee Expires April 8, 2010 [Page 14] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixID | RstType = 2 | MaxWaveBandWidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Wavelength Set | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ In this case the accompanying MaxWaveBandWidth indicates the maximum width of the waveband in terms of the channels spacing given in the wavelength set. The corresponding wavelength set is used to indicate the overall tuning range. Specific center frequency tuning information can be obtained from dynamic channel in use information. It is assumed that both center frequency and bandwidth (Q) tuning can be done without causing faults in existing signals. 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT In the case of the SIMPLE_WAVELENGTH & CHANNEL_COUNT the format is given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixInfo | RstType = 3 | MaxNumChannels | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Wavelength Set Field | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ In this case the accompanying wavelength set and MaxNumChannels indicate wavelength permitted on the port and the maximum number of channels that can be simultaneously used on the port. 5. Wavelength Converter Pool Encoding The encoding of structure and properties of a general wavelength converter pool utilizes a converter accessibility sub-TLV, a wavelength converter range sub-TLV, and a wavelength converter state sub-TLV. All these sub-TLVs make use of the wavelength converter set field. Bernstein and Lee Expires April 8, 2010 [Page 15] Internet-Draft Wavelength Switched Optical Networks October 2009 5.1. Wavelength Converter Set Field A WSON node may include a set of wavelength converters (WC) and such information frequently is used in describing the wavelength converter pool and its properties. The WC Set field is defined in a similar manner to the label set concept of [RFC3471]. The information carried in a WC set field is defined by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action |E| Reserved | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Identifier 1 | WC Identifier 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Identifier n-1 | WC Identifier n | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Action: 8 bits 0 - Inclusive List Indicates that the TLV contains one or more WC elements that are included in the list. 2 - Inclusive Range Indicates that the TLV contains a range of WCs. The object/TLV contains two WC elements. The first element indicates the start of the range. The second element indicates the end of the range. A value of zero indicates that there is no bound on the corresponding portion of the range. E (Even bit): Set to 0 denotes an odd number of WC identifiers in the list (last entry zero pad); Set to 1 denotes an even number of WC identifiers in the list (no zero padding). Reserved: 7 bits This field is reserved. It MUST be set to zero on transmission and MUST be ignored on receipt. Bernstein and Lee Expires April 8, 2010 [Page 16] Internet-Draft Wavelength Switched Optical Networks October 2009 Length: 16 bits The total length of this field in bytes. WC Identifier: The WC identifier represents the ID of the wavelength convertor which is a 16 bit integer. 5.2. Wavelength Converter Accessibility Sub-TLV This sub-TLV describes the structure of the wavelength converter pool in relation to the switching device. In particular it gives the ability of an ingress port to reach a wavelength converter and of a wavelength converter to reach a particular egress port. This is the PoolIngressMatrix and PoolEgressMatrix of [WSON-Info]. The wavelength converter accessibility sub-TLV is defined by: Bernstein and Lee Expires April 8, 2010 [Page 17] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ingress Link Set Field A #1 | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Set Field A #1 | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional Link set and WC set pairs as needed to | : specify PoolIngressMatrix : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Set B Field #1 (for egress connectivity) | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Egress link Set Field B #1 | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional WC set and egress link set pairs | : as needed to specify PoolEgressMatrix : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note that the direction parameter within the Link Set Field is used to indicate whether the link set is an ingress or egress link set, and the bidirectional value for this parameter is not permitted in this sub-TLV. 5.3. Wavelength Conversion Range Sub-TLV Wavelength converters may have a limited input or output range. Additionally, due to the structure of the optical system not all wavelengths can necessarily reach or leave all the converters. These properties are described by using one or more wavelength conversion sub-TLVs as defined below: Bernstein and Lee Expires April 8, 2010 [Page 18] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Wavelength Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Output Wavelength Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ WC Set Field: A set of wavelength converters (WCs) which have the same conversion range. Input Wavelength Set Field: Indicates the wavelength input range of the WCs in the corresponding WC set. Output Wavelength Set Field: Indicates the wavelength output range of WCs in the corresponding WC set. 5.4. Wavelength Converter Usage State Sub-TLV The usage state of a wavelength converter is encoded as a bit map indicating whether the converter is available or in use. This information can be relatively dynamic, i.e., can change when a connection is established or torn down. This bit map is in correspondence with a wavelength converter set as follows: Bernstein and Lee Expires April 8, 2010 [Page 19] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC Usage state bitmap | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ...... | Padding bits | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ WC Usage state: Variable Length but must be a multiple of 4 byes. Each bit indicates the usage status of one WC with 0 indicating the WC is available and 1 indicating the WC is in used. The sequence of the bit map is ordered according to the WC Set field with this sub- TLV. Padding bits: Variable Length 6. WSON Encoding Usage Recommendations In this section we give recommendations of typical usage of the previously defined sub-TLVs. Typically the sub-TLVs defined in the preceding sections would be incorporated into some kind of composite TLV. The example composite TLVs in the following sections are based on the four high level information bundles of [WSON-Info]. 6.1. WSON Node TLV The WSON Node TLV could consist of the following list of sub-TLVs: ::= [Other GMPLS sub- TLVs][...] [][] 6.2. WSON Dynamic Node TLV If the protocol supports the separation of dynamic information from relatively static information then the wavelength converter pool state can be separated from the general Node TLV into a dynamic Node TLV as follows. ::= [] Bernstein and Lee Expires April 8, 2010 [Page 20] Internet-Draft Wavelength Switched Optical Networks October 2009 Note that currently the only dynamic information modeled with a node is associated with the status of the wavelength converter pool. 6.3. WSON Link TLV The new link related sub-TLVs could be incorporated into a composite link TLV as follows: ::= [Other GMPLS sub-TLVs] [...][] [] 6.4. WSON Dynamic Link TLV If the protocol supports the separation of dynamic information from relatively static information then the available wavelength and shared backup status can be separated from the general link TLV into a TLV for dynamic link information. ::= [] 7. Security Considerations This document defines protocol-independent encodings for WSON information and does not introduce any security issues. However, other documents that make use of these encodings within protocol extensions need to consider the issues and risks associated with, inspection, interception, modification, or spoofing of any of this information. It is expected that any such documents will describe the necessary security measures to provide adequate protection. 8. IANA Considerations TBD. Once our approach is finalized we may need identifiers for the various TLVs and sub-TLVs. 9. Acknowledgments This document was prepared using 2-Word-v2.0.template.dot. Bernstein and Lee Expires April 8, 2010 [Page 21] Internet-Draft Wavelength Switched Optical Networks October 2009 APPENDIX A: Encoding Examples A.1. Link Set Field Suppose that we wish to describe a set of ingress ports that are have link local identifiers number 3 through 42. In the link set field we set the Action = 1 to denote an inclusive range; the Dir = 1 to denote ingress links; and, the Format = 0 to denote link local identifiers. In particular we have: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #42 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.2. Wavelength Set Field Example: A 40 channel C-Band DWDM system with 100GHz spacing with lowest frequency 192.0THz (1561.4nm) and highest frequency 195.9THz (1530.3nm). These frequencies correspond to n = -11, and n = 28 respectively. Now suppose the following channels are available: Frequency (THz) n Value bit map position -------------------------------------------------- 192.0 -11 0 192.5 -6 5 193.1 0 11 193.9 8 19 194.0 9 20 195.2 21 32 195.8 27 38 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. set to indicate 100GHz this lambda bit map set would then be encoded as follows: Bernstein and Lee Expires April 8, 2010 [Page 22] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 4 | Num Wavelengths = 40 | Length = 16 bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = -11 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ To encode this same set as an inclusive list we would have: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Num Wavelengths = 40 | Length = 20 bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = -11 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n2 = -6 | n3 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n4 = 8 | n5 = 9 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n6 = 21 | n7 = 27 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.3. Connectivity Matrix Sub-TLV Example: Suppose we have a typical 2-degree 40 channel ROADM. In addition to its two line side ports it has 80 add and 80 drop ports. The picture below illustrates how a typical 2-degree ROADM system that works with bi-directional fiber pairs is a highly asymmetrical system composed of two unidirectional ROADM subsystems. Bernstein and Lee Expires April 8, 2010 [Page 23] Internet-Draft Wavelength Switched Optical Networks October 2009 (Tributary) Ports #3-#42 Ingress added to Egress dropped from West Line Egress East Line Ingress vvvvv ^^^^^ | |||.| | |||.| +-----| |||.|--------| |||.|------+ | +----------------------+ | | | | | Egress | | Unidirectional ROADM | | Ingress -----------------+ | | +-------------- <=====================| |===================< -----------------+ +----------------------+ +-------------- | | Port #1 | | Port #2 (West Line Side) | |(East Line Side) -----------------+ +----------------------+ +-------------- >=====================| |===================> -----------------+ | Unidirectional ROADM | +-------------- Ingress | | | | Egress | | _ | | | +----------------------+ | +-----| |||.|--------| |||.|------+ | |||.| | |||.| vvvvv ^^^^^ (Tributary) Ports #43-#82 Egress dropped from Ingress added to West Line ingress East Line egress Referring to the figure we see that the ingress direction of ports #3-#42 (add ports) can only connect to the egress on port #1. While the ingress side of port #2 (line side) can only connect to the egress on ports #3-#42 (drop) and to the egress on port #1 (pass through). Similarly, the ingress direction of ports #43-#82 can only connect to the egress on port #2 (line). While the ingress direction of port #1 can only connect to the egress on ports #43-#82 (drop) or port #2 (pass through). We can now represent this potential connectivity matrix as follows. This representation uses only 30 32- bit words. Bernstein and Lee Expires April 8, 2010 [Page 24] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Conn = 1 | MatrixID | Reserved |1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: adds to line +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #3 |3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #42 |4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 |6 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: line to drops +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |7 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 |8 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |1 0|0 0 0 0 0 0| Length = 12 |9 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #3 |10 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #42 |11 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: line to line +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 |13 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |14 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 |15 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: adds to line +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |16 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #43 |17 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Bernstein and Lee Expires April 8, 2010 [Page 25] Internet-Draft Wavelength Switched Optical Networks October 2009 | Link Local Identifier = #82 |18 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |19 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 |20 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: line to drops +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 |21 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 |22 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |1 0|0 0 0 0 0 0| Length = 12 |23 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #43 |24 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #82 |25 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: line to line +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |26 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 |27 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |28 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 |30 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.4. Connectivity Matrix with Bi-directional Symmetry If one has the ability to renumber the ports of the previous example as shown in the next figure then we can take advantage of the bi- directional symmetry and use bi-directional encoding of the connectivity matrix. Note that we set dir=bidirectional in the link set fields. Bernstein and Lee Expires April 8, 2010 [Page 26] Internet-Draft Wavelength Switched Optical Networks October 2009 (Tributary) Ports #3-42 Ports #43-82 West Line Egress East Line Ingress vvvvv ^^^^^ | |||.| | |||.| +-----| |||.|--------| |||.|------+ | +----------------------+ | | | | | Egress | | Unidirectional ROADM | | Ingress -----------------+ | | +-------------- <=====================| |===================< -----------------+ +----------------------+ +-------------- | | Port #1 | | Port #2 (West Line Side) | |(East Line Side) -----------------+ +----------------------+ +-------------- >=====================| |===================> -----------------+ | Unidirectional ROADM | +-------------- Ingress | | | | Egress | | _ | | | +----------------------+ | +-----| |||.|--------| |||.|------+ | |||.| | |||.| vvvvv ^^^^^ Ports #3-#42 Ports #43-82 Egress dropped from Ingress added to West Line ingress East Line egress Bernstein and Lee Expires April 8, 2010 [Page 27] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Conn = 1 | MatrixID | Reserved |1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Add/Drops #3-42 to Line side #1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #3 |3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #42 |4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 |6 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: line #2 to add/drops #43-82 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |7 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 |8 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |9 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #43 |10 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #82 |11 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: line to line +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 |13 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |14 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 |15 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.5. Wavelength Converter Accessibility Sub-TLV Example: Bernstein and Lee Expires April 8, 2010 [Page 28] Internet-Draft Wavelength Switched Optical Networks October 2009 Figure 1 shows a wavelength converter pool architecture know as "shared per fiber". In this case the ingress and egress pool matrices are simply: +-----+ +-----+ | 1 1 | | 1 0 | WI =| |, WE =| | | 1 1 | | 0 1 | +-----+ +-----+ +-----------+ +------+ | |--------------------->| | | |--------------------->| C | /| | |--------------------->| o | /D+--->| |--------------------->| m | + e+--->| | | b |========> ========>| M| | Optical | +-----------+ | i | Port E1 Port I1 + u+--->| Switch | | WC Pool | | n | \x+--->| | | +-----+ | | e | \| | +----+->|WC #1|--+---->| r | | | | +-----+ | +------+ | | | | +------+ /| | | | +-----+ | | | /D+--->| +----+->|WC #2|--+---->| C | + e+--->| | | +-----+ | | o | ========>| M| | | +-----------+ | m |========> Port I2 + u+--->| | | b | Port E2 \x+--->| |--------------------->| i | \| | |--------------------->| n | | |--------------------->| e | | |--------------------->| r | +-----------+ +------+ Figure 1 An optical switch featuring a shared per fiber wavelength converter pool architecture. This wavelength converter pool can be encoded as follows: Bernstein and Lee Expires April 8, 2010 [Page 29] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Note: I1,I2 can connect to either WC1 or WC2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC ID = #1 | WC ID = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: WC1 can only connect to E1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC ID = #1 | zero padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: WC2 can only connect to E2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0| | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC ID = #2 | zero padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.6. Wavelength Conversion Range Sub-TLV Example: We give an example based on figure 1 about how to represent the wavelength conversion range of wavelength converters. Suppose the wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, L4}: Bernstein and Lee Expires April 8, 2010 [Page 30] Internet-Draft Wavelength Switched Optical Networks October 2009 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Note: WC Set +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC ID = #1 | WC ID = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: wavelength input range +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 2 | Num Wavelengths = 4 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: wavelength output range +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 2 | Num Wavelengths = 4 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Bernstein and Lee Expires April 8, 2010 [Page 31] Internet-Draft Wavelength Switched Optical Networks October 2009 10. References 10.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000. [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003. [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM applications: DWDM frequency grid", June, 2002. [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005. 10.2. Informative References [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid, June 2002. [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM applications: CWDM wavelength grid, December 2003. [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized Labels for G.694 Lambda-Switching Capable Label Switching Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- lambda-labels. [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 5307, October 2008. Bernstein and Lee Expires April 8, 2010 [Page 32] Internet-Draft Wavelength Switched Optical Networks October 2009 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling WDM Wavelength Switching Systems for Use in GMPLS and Automated Path Computation", Journal of Optical Communications and Networking, vol. 1, June, 2009, pp. 187-195. [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and PCE Control of Wavelength Switched Optical Networks", work in progress: draft-ietf-ccamp-wavelength-switched- framework, Marh 2009. [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", work in progress: draft-ietf- ccamp-rwa-info, March 2009. [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) communication Protocol (PCEP) - Version 1", RFC5440. Bernstein and Lee Expires April 8, 2010 [Page 33] Internet-Draft Wavelength Switched Optical Networks October 2009 11. Contributors Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa Italy Phone: +39 010 600 3736 Email: diego.caviglia@(marconi.com, ericsson.com) Anders Gavler Acreo AB Electrum 236 SE - 164 40 Kista Sweden Email: Anders.Gavler@acreo.se Jonas Martensson Acreo AB Electrum 236 SE - 164 40 Kista, Sweden Email: Jonas.Martensson@acreo.se Itaru Nishioka NEC Corp. 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 Japan Phone: +81 44 396 3287 Email: i-nishioka@cb.jp.nec.com Authors' Addresses Greg M. Bernstein (ed.) Grotto Networking Fremont California, USA Phone: (510) 573-2237 Email: gregb@grotto-networking.com Bernstein and Lee Expires April 8, 2010 [Page 34] Internet-Draft Wavelength Switched Optical Networks October 2009 Young Lee (ed.) Huawei Technologies 1700 Alma Drive, Suite 100 Plano, TX 75075 USA Phone: (972) 509-5599 (x2240) Email: ylee@huawei.com Dan Li Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base, Bantian, Longgang District Shenzhen 518129 P.R.China Phone: +86-755-28973237 Email: danli@huawei.com Wataru Imajuku NTT Network Innovation Labs 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan Phone: +81-(46) 859-4315 Email: imajuku.wataru@lab.ntt.co.jp Jianrui Han Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base, Bantian, Longgang District Shenzhen 518129 P.R.China Phone: +86-755-28972916 Email: hanjianrui@huawei.com Intellectual Property Statement The IETF Trust takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in any IETF Document or the extent to which any license under such rights might or might not be available; nor does it Bernstein and Lee Expires April 8, 2010 [Page 35] Internet-Draft Wavelength Switched Optical Networks October 2009 represent that it has made any independent effort to identify any such rights. Copies of Intellectual Property disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement any standard or specification contained in an IETF Document. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity All IETF Documents and the information contained therein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society. Bernstein and Lee Expires April 8, 2010 [Page 36]